Меню
Бесплатно
Главная  /  Общая информация  /  История квадратных уравнений открытия и исследования. Исследовательская работа: «История возникновения квадратных уравнений"

История квадратных уравнений открытия и исследования. Исследовательская работа: «История возникновения квадратных уравнений"

Из истории квадратных уравнений .

а) Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Применяя современную алгебраическую запись, можно сказать , что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

х 2 + х = , х 2 – х = 14

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным , однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

В «Арифметике» Диофанта нет систематического изложения алгебры , однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача 2. «Найти два числа, зная, что их сумма равна 20, а произведение - 96».

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны , то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т. е. 10 + х. Другое же меньше, т. е. 10 - х. Разность между ними 2х. Отсюда уравнение:

(10+x)(10-x) =96,

или же


100 -x 2 = 96.

Отсюда х = 2. Одно из искомых чисел равно 12, другое 8. Решение х = - 2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если решить эту задачу, выбирая в качестве неизвестного одно из искомых чисел , то можно прийти к решению уравнения:

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения.
б) Квадратные уравнения в Индии.

Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабахаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме

ах 2 + b х = с, а > 0

В уравнении коэффициенты , кроме а , могут быть отрицательными. Правило Брахмагупта по существу совпадает с нашим.

В Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

Задача 3.


Решение Бхаскары свидетельствует о том, что автор знал о двузначности корней квадратных уравнений.

Соответствующее задаче 3 уравнение:

Бхаскара пишет под видом:

x 2 - 64x = - 768

и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем:

x 2 - б4х + 32 2 = -768 + 1024,

(х - 32) 2 = 256,

x 1 = 16, x 2 = 48.

в) Квадратные уравнения у Аль-Хорезми

В алгебраическом трактате Аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:


  1. «Квадраты равны корням», т. е. ах 2 = bх.

  2. «Квадраты равны числу», т. е. ах 2 = с.

  3. «Корни равны числу», т. е. ах = с.

  4. «Квадраты и числа равны корням», т. е. ах 2 + с = bх.

  5. «Квадраты и корни равны числу», т. е. ах 2 + bх =с.

  6. «Корни и числа равны квадратам», т. е. bх + с == ах 2 .
Для Аль-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений , пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида Аль-Хорезми , как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений Аль-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

Приведем пример.

Задача 4. «Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х 2 + 21 = 10х).

Решение: раздели пополам число корней, получишь 5, умножь 5 само на себя , от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от 5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

Трактат Аль-Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

г) Квадратные уравнения в Европе XIII-XVII вв.

Формулы решения квадратных уравнений по образцу ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. Итальянским математиком Леонардо Фибоначчи. Этот объемный труд, в котором отражено влияние математики как стран ислама, так и Древней Греции, отличается и полнотой , и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники XVI-XVII вв. и частично XVIII.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду

х 2 + bх = с,

при всевозможных комбинациях знаков коэффициентов b , с было сформулировано в Европе лишь в 1544 г. М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета , однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Истоки алгебраических методов решения практических задач связаны с наукой древнего мира. Как известно из истории математики, значительная часть задач математического характера , решаемых египетскими, шумерскими, вавилонскими писцами-вычислителями (XX-VI вв. до н. э.), имела расчетный характер. Однако уже тогда время от времени возникали задачи, в которых искомое значение величины задавалось некоторыми косвенными условиями, требующими, с нашей современной точки зрения , составления уравнения или системы уравнений. Первоначально для решения таких задач применялись арифметические методы. В дальнейшем начали формироваться начатки алгебраических представлений. Например, вавилонские вычислители умели решать задачи, сводящиеся с точки зрения современной классификации к уравнениям второй степени. Был создан метод решения текстовых задач, послуживший в дальнейшем основой для выделения алгебраического компонента и его независимого изучения.

Это изучение осуществлялось уже в другую эпоху сначала арабскими математиками (VI-Х вв. н. э.), выделившими характерные действия, посредством которых уравнения приводились к стандартному виду приведение подобных членов, перенос членов из одной части уравнения в другую с переменой знака. А затем европейскими математиками Возрождения , в итоге длительного поиска создавшими язык современной алгебры, использование букв, введение символов арифметических операций, скобок и т. д. На рубеже XVI-XVII вв. алгебра как специфическая часть математики, обладающая своим предметом, методом, областями приложения , была уже сформирована. Дальнейшее ее развитие, вплоть до нашего времени, состояло в совершенствовании методов, расширении области приложений, уточнении понятий и связей их с понятиями других разделов математики.

Итак, ввиду важности и обширности материала, связанного с понятием уравнения , его изучение в современной методике математики связано с тремя главными областями своего возникновения и функционирования.

История развития решений квадратных уравнений

Аристотель

Д.И.Менделеев



Найти стороны поля, имеющего форму прямоугольника, если его площадь 12 , а

Рассмотрим эту задачу.

  • Пусть х – длина поля, тогда – его ширина,
  • – его площадь.
  • Составим квадратное уравнение:
  • В папирусе дано правило его решения: «Разделим 12 на ».
  • 12: .
  • Итак, .
  • «Длина поля равна 4», - указано в папирусе.


  • Приведенное квадратное уравнение
  • где – любые действительные числа.

В одной из вавилонских задач так же требовалось определить длину прямоугольного поля (обозначим ее) и его ширину ().

Сложив длину и две ширины прямоугольного поля, получишь 14, а площадь поля 24. Найти его стороны.

Составим систему уравнений:

Отсюда получаем квадратное уравнение.

Для его решения прибавим к выражению некоторое число,

чтобы получить полный квадрат:


Следовательно, .

Вообще же квадратное уравнение

Имеет два корня:




  • ДИОФАНТ
  • Древнегреческий математик, живший предположительно в III веке до н. э. Автор «Арифметики» - книги, посвящённой решению алгебраических уравнений.
  • В наше время под «диофантовыми уравнениями» обычно понимают уравнения с целыми коэффициентами, решения которых требуется найти среди целых чисел. Диофант также одним из первых развивал математические обозначения.

«Найдите два числа, зная, что их сумма равна 20, а произведение 96».

Одно из чисел будет больше половины их суммы, то есть 10+, другое же меньше, то есть 10-.

Отсюда уравнение ()()=96






Приведем одну из задач знаменитого

индийского математика XII века Бхаскары:

Обезьянок резвых стая

Всласть поевши, развлекалась.

Их в квадрате часть восьмая

На поляне забавлялась.

А двенадцать по лианам…

Стали прыгать, повисая…

Сколько ж было обезьянок,

Ты скажи мне, в этой стае?


  • Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений.
  • Соответствующее решение уравнения
  • Бхаскара записывает в виде и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляем к обеим частям 32 2 , получая




«АЛЬ-ДЖЕБР» – ВОССТАНОВЛЕНИЕМ - АЛЬ-ХОРЕЗМИ НАЗЫВАЛ ОПЕРАЦИЮ ИСКЛЮЧЕНИЯ ИЗ ОБЕИХ ЧАСТЕЙ УРАВНЕНИЯ ОТРИЦАТЕЛЬНЫХ ЧЛЕНОВ ПУТЕМ ДОБАВЛЕНИЯ РАВНЫХ ЧЛЕНОВ, НО ПРОТИВОПОЛОЖНЫХ ПО ЗНАКУ.

«АЛЬ-МУКАБАЛА» – ПРОТИВОПОСТАВЛЕНИЕ – СОКРАЩЕНИЕ В ЧАСТЯХ УРАВНЕНИЯ ОДИНАКОВЫХ ЧЛЕНОВ.

ПРАВИЛО «АЛЬ-ДЖЕБР»

ПРИ РЕШЕНИИ УРАВНЕНИЯ

ЕСЛИ В ЧАСТИ ОДНОЙ,

БЕЗРАЗЛИЧНО КАКОЙ,

ВСТРЕТИТСЯ ЧЛЕН ОТРИЦАТЕЛЬНЫЙ,

МЫ К ОБЕИМ ЧАСТЯМ

РАВНЫЙ ЧЛЕН ПРИДАДИМ,

ТОЛЬКО С ЗНАКОМ ДРУГИМ,

И НАЙДЕМ РЕЗУЛЬТАТ ПОЛОЖИТЕЛЬНЫЙ.


1) квадраты равны корням, то есть;

2)квадраты равны числу, то есть;

3)корни равны числу, то есть;

4)квадраты и числа равны корням, т. е. ;

5)квадраты и корни равны числу, т. е. ;

6)корни и числа равны квадратам, т. е. .


Задача . Квадрат и число 21 равны 10 корням. Найти корень.

Решение . Разделим пополам число корней – получишь 5, умножь 5 на само себя,

от произведения отними 21, останется 4.

Извлеки корень из 4 – получишь 2.

Отними 2 от 5 – получишь 3, это и будет искомый корень. Или же прибавь к 5, что даст 7, это тоже есть корень.



Фибоначчи родился в итальянском торговом центре городе Пиза, предположительно в 1170-е годы. . В 1192 году он был назначен представлять пизанскую торговую колонию в Северной Африке. По желанию отца, он переехал в Алжир и изучал там математику. В 1200 году Леонардо вернулся в Пизу и принялся за написание своего первого труда «Книги абака» [ . По словам историка математики А. П. Юшкевича Книга абака“ резко возвышается над европейской арифметико-алгебраической литературой XII-XIV веков разнообразием и силой методов, богатством задач, доказательностью изложения… Последующие математики широко черпали из неё как задачи, так и приёмы их решения ».







Построим график функции

  • Графиком является парабола, ветви которой направлены вверх, так как

2) Координаты вершины параболы



У. Соейр говорил :

«Человеку, изучающему алгебру, часто полезнее решать одну и ту же задачу тремя различными способами, чем решать три-четыре различных задачи. Решая одну задачу различными методами, можно путем сравнений выяснить, какой из них короче и эффективнее. Так вырабатывается опыт».


«Город – единство не похожих»

Аристотель

«Число выраженное десятичным знаком, прочтет и немец, и русский, и араб, и янки одинаково»

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне.

Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

X 2 + X = ѕ; X 2 - X = 14,5

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Как составлял и решал Диофант квадратные уравнения.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача 11. «Найти два числа, зная, что их сумма равна 20, а произведение - 96»

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х , другое же меньше, т.е. 10 - х . Разность между ними .

Отсюда уравнение:

(10 + х)(10 - х) = 96

Отсюда х = 2 . Одно из искомых чисел равно 12 , другое 8 . Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения

у(20 - у) = 96,

у 2 - 20у + 96 = 0. (2)

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).

Квадратные уравнения в Индии

Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученный, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

ах 2 + bх = с, а > 0. (1)

В уравнении (1) коэфиценты, кроме а , могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

Задача 13.

«Обезьянок резвых стая А двенадцать по лианам…

Власть поевши, развлекалась. Стали прыгать, повисая…

Их в квадрате часть восьмая Сколько ж было обезьянок,

На поляне забавлялась. Ты скажи мне, в этой стае?»

Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений (рис. 3).

Соответствующее задаче 13 уравнение:

(x/8) 2 + 12 = x

Бхаскара пишет под видом:

х 2 - 64х = -768

и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем:

х 2 - 64х + 32 2 = -768 + 1024,

(х - 32) 2 = 256,

х - 32 = ± 16,

х 1 = 16, х 2 = 48.

Ковальчук Кирилл

Проект "Квадратные уравнения через века и страны" знакомит учащихся с учеными математики, открытия которых являются основой научно-технического прогресса, развивает интерес к математике как к предмету на основе знакомства с историческим материалом, расширяет кругозор учащихся, стимулирует их познавательную активность и творчество.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Проектная работа ученика 8 класса МОУ СОШ №17 с.Борисовка Ковальчука Кирилла Руководитель Мулюкова Г.В.

Квадратные уравнения через века и страны

Цель проекта: Познакомить учащихся с учеными математики, открытия которых являются основой научно-технического прогресса. Показать значимость работ ученых для развития геометрии и физики.??????????? Наглядно продемонстрировать применение научных открытий в жизни. Развивать интерес к математике как к предмету на основе знакомства с историческим материалом. Расширять кругозор учащихся, стимулировать их познавательную активность и творчество

Необходимость решать уравнения не только первой степени, но и второй ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков, с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне. Правила решения этих уравнений, изложенные в вавилонских текстах, совпадает по существу с современными, но в этих текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

. (ок. 365 - 300 г. до н.э.) - древне­греческий математик, автор первых дошедших до нас теоретических трактатов по математике. Евклид, или Эвклид

Евклид Начала Там, где с морем Сливается Нил, В древнем жарком краю Пирамид Математик греческий жил - Многознающий, Мудрый Эвклид. Геометрию он изучал, Геометрии он обучал. Написал он великий труд. Эту книгу «Начала» зовут.

Евклид 3 век до н.э. Евклид решал квадратные уравнения, применяя геометрический способ. Вот одна из задач из древнегреческого трактата: «Имеется город с границей в виде квадрата со стороной неизвестного размера, в центре каждой стороны находятся ворота. На расстоянии 20бу(1бу=1,6м) от северных ворот стоит столб. Если пройти от южных ворот 14бу прямо, затем повернуть на запад и пройти еще 1775бу, то можно увидеть столб. Спрашивается: какова сторона границы города? »

Чтобы определить неизвестную сторону квадрата, получаем квадратное уравнение x ² +(k+l)x-2kd =0 . В данном случае уравнение имеет вид x ² +34x-71000=0 , откуда х=250бу l x d k

Квадратные уравнения в Индии Задачи на квадратные уравнения встречаются и в астрономическом трактате « Ариабхаттиам », составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта, изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ax ² +bx=c , a>0 В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи».

Одна из задач знаменитого индийского математика XІІ века Бхаскары Обезьянок резвых стая Всласть поевши, развлекалась. Их в квадрате часть восьмая На поляне забавлялась. А двенадцать по лианам… Стали прыгать повисая… Сколько было обезьянок Ты скажи мне, в этой стае?.

Решение. () 2 +12 = х, х 2 - 64х +768 = 0, а =1, в = -64, с = 768, тогда Д = (-64) 2 -4·1·768 = 1024 > 0. Х 1 , 2 = , х 1 = 48, х 2 = 16. Ответ.Обезьян было 16 или 48. Давайте решим её.

Формула корней квадратного уравнения « переоткрывалась » неоднократно. Один из первых дошедших до наших дней выводов этой формулы принадлежит индийскому математику Брахмагупте. Среднеазиатский ученый ал-Хорезми в трактате « Китаб аль-джерб валь-мукабала » получил эту формулу методом выделения полного квадрата.

Как же решал ал-Хорезми это уравнение. Он писал: "Правило таково: раздвои число корней, х=2х · 5 получите в этой задаче пять, 5 умножь на это равное ему, будет двадцать пять, 5 · 5=25 прибавь это к тридцати девяти, 25+39 будет шестьдесят четыре, 64 извлеки из этого корень, будет восемь, 8 и вычти из этого половину числа корней, т.е.пять, 8- 5 останется три- это и 3 Будет корень квадрата, который ты искал." А второй корень? Второй корень не находили, так как отрицательные числа не были известны. х 2 +10 х = 39

Квадратные уравнения в Европе 13-17вв. Формулы решения квадратных уравнений по образцу ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники 16-17вв. и частично 18.

Франсуа Виет – крупнейший математик 16 века

До Ф. Виета решение квадратного уравнения выполнялось по своим правилам в виде очень длинных словесных рассуждений и описаний, довольно громоздких действий. Даже само уравнение не могли записать, для этого требовалось довольно длинное и сложное словесное описание. Он ввел термин «коэффициент». Предложил искомые величины обозначать гласными, а данные – согласными. Благодаря символике Виета можно записать квадратное уравнение в виде: ax 2 + bx + c =0 . Теорема: Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Несмотря на то, что эта теорема называется «Теорема Виета», она была известна и до него, а он только преобразовал ее в современный вид. Виета называют «отцом алгебры»

Человечество прошло длительный путь от незнания к знанию, непрерывно заменяя на этом пути неполное и несовершенное знание все более полным и совершенным. Заключительное слово

Нас, живущих в начале XXI века, влечет старина. В своих предках мы замечаем прежде всего то, чего им не хватает с современной точки зрения, и обычно не замечаем того, что нам самим не хватает по сравнению с ними.

Не будем и мы забывать о них…

СПАСИБО ЗА внимание!

Квадратные уравнения в Древнем Вавилоне Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей веры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения: Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводя только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилонии, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.


Как составлял и решал Диофант квадратные уравнения «Найти два числа, зная, что их сумма равна 20, а произведение 96» Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, т.к. если бы они равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10+X, другое же меньше, т.е. 10-X. Разность между ними 2Х Отсюда Х=2. Одно из искомых чисел равно 12, другое 8. Решение Х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа. УРАВНЕНИЕ: или же:


Квадратные уравнения в Индии Задачи на квадратные уравнения встречаются и в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта, изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ax ² +bx=c, a>0 Одна из задач знаменитого индийского математика XІІ века Бхаскары Обезьянок резвых стая Всласть поевши, развлекалась. Их в квадрате часть восьмая На поляне забавлялась. А двенадцать по лианам… Стали прыгать повисая… Сколько было обезьянок Ты скажи мне, в этой стае?. Соответствующее задачи уравнение: Баскара пишет под видом: Дополнил левую часть до квадрата, 0 Одна из задач знаменитого индийского математика XІІ века Бхаскары Обезьянок резвых стая Всласть поевши, развлекалась. Их в квадрате часть восьмая На поляне забавлялась. А двенадцать по лианам… Стали прыгать повисая… Сколько было обезьянок Ты скажи мне, в этой стае?. Соответствующее задачи уравнение: Баскара пишет под видом: Дополнил левую часть до квадрата,">


Квадратные уравнения в Древней Азии Вот как решал это уравнение среднеазиатский ученый ал-Хорезми: Он писал: "Правило таково: раздвои число корней, х=2х·5 получите в этой задаче пять, 5 умножь на это равное ему, будет двадцать пять, 5·5=25 прибавь это к тридцати девяти, будет шестьдесят четыре, 64 извлеки из этого корень, будет восемь, 8 и вычти из этого половину числа корней, т.е.пять, 8-5 останется 3 это будет корень квадрата, который ты искал." А второй корень? Второй корень не находили, так как отрицательные числа не были известны. х х = 39


Квадратные уравнения в Европе XIII-XVII вв. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х2+вх+с=0, было сформулировано в Европе лишь в 1544 г. Штифелем.. Формулы решения квадратных уравнений в Европе были впервые изложены в 1202 г. итальянским математиком Леонардом Фибоначчи. Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Лишь в 17 в. благодаря трудам Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид


О теореме Виета Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. Следующим образом: «Если B+D, умноженное на А-А, равно BD, то А равно В и равно D». Чтобы понять Виета, следует помнить, что А, как и всякая гласная буква, означало у него неизвестное (наше х), гласные же B,D- кэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает: Если приведенное квадратное уравнение x 2 +px+q=0 имеет действительные корни, то их сумма равна -p, а произведение равно q, то есть x 1 + x 2 = -p, x 1 x 2 = q (сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену).


Метод разложения на множители привести квадратное уравнение общего вида к виду: А(х)·В(х)=0, где А(х) и В(х) – многочлены относительно х. Цель: Вынесение общего множителя за скобки; Использование формул сокращенного умножения; Способ группировки. Способы: Пример:




Корни квадратного уравнения: Если D>0, Если D 0, Если D"> 0, Если D"> 0, Если D" title="Корни квадратного уравнения: Если D>0, Если D"> title="Корни квадратного уравнения: Если D>0, Если D">


X 1 и х 2 – корни уравнения Решение уравнений с помощью теоремы Виета Х 2 + 3Х – 10 = 0 Х 1 ·Х 2 = – 10, значит корни имеют разные знаки Х 1 + Х 2 = – 3, значит больший по модулю корень - отрицательный Подбором находим корни: Х 1 = – 5, Х 2 = 2 Например:


0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени" title="Решите уравнение: 2х 2 - 11х +15 = 0. Перебросим коэффициент 2 к свободному члену у 2 - 11у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени" class="link_thumb"> 14 Решите уравнение: 2х х +15 = 0. Перебросим коэффициент 2 к свободному члену у у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнений способом «переброски» 0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени"> 0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнений способом «переброски»"> 0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени" title="Решите уравнение: 2х 2 - 11х +15 = 0. Перебросим коэффициент 2 к свободному члену у 2 - 11у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени"> title="Решите уравнение: 2х 2 - 11х +15 = 0. Перебросим коэффициент 2 к свободному члену у 2 - 11у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени">


Если в квадратном уравнении a+b+c=0, то один из корней равен 1, а второй по теореме Виета равен второй по теореме Виета равен Если в квадратном уравнении a+c=b, то один из корней равен (-1), а второй по теореме Виета равен Пример: Свойства коэффициентов квадратного уравнения 137х х – 157 = 0. a = 137, b = 20, c = a + b+ c = – 157 =0. x 1 = 1, Ответ: 1; 137х х – 157 = 0. a = 137, b = 20, c = a + b+ c = – 157 =0. x 1 = 1, Ответ: 1;




Графический способ решения квадратного уравнения Не используя формул квадратное уравнение можно решить графическим способом. Решим уравнение Для этого построим два графика: X Y X 01 Y012 Ответ: Абсциссы точек пересечения графиков и будет корнями уравнения. Если графики пересекаются в двух точках, то уравнение имеет два корня. Если графики пересекаются в одной точке, то уравнение имеет один корень. Если графики не пересекаются, то уравнение корней не имеет. 1)y=x2 2)y=x+1




Решение квадратных уравнений с помощью номограммы Это старый и незаслуженно забытый способ решения квадратных уравнений, помещенный на с.83 «Четырехзначные математические таблицы» Брадис В.М. Таблица XXII. Номограмма для решения уравнения Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения. Для уравнения номограмма дает корни


Геометрический способ решения квадратных уравнений В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. А вот, например, как древние греки решали уравнение: или Выражения и геометрически предоставляют собой один и тот же квадрат, а исходное уравнение одно и тоже уравнение. Откуда и получаем что, или


Заключение данные приёмы решения заслуживают внимания, поскольку они не все отражены в школьных учебниках математики; овладение данными приёмами поможет учащимся экономить время и эффективно решать уравнения; потребность в быстром решении обусловлена применением тестовой системы вступительных экзаменов;