Меню
Бесплатно
Главная  /  Общая информация  /  Немецкий космолог выдвинул гипотезу о нерасширении вселенной. Гипотеза расширения вселенной Какими фактами можно подтвердить модель расширяющейся вселенной

Немецкий космолог выдвинул гипотезу о нерасширении вселенной. Гипотеза расширения вселенной Какими фактами можно подтвердить модель расширяющейся вселенной

Всего лишь сто лет назад ученые обнаружили, что наше Мироздание стремительно увеличивается в размерах.

Еще сто лет назад представления о Вселенной базировались на ньютоновской механике и евклидовой геометрии. Даже немногие ученые, такие как Лобачевский и Гаусс, допускавшие (только как гипотезу!) физическую реальность неевклидовой геометрии, считали космическое пространство вечным и неизменным

Алексей Левин

В 1870 году английский математик Уильям Клиффорд пришел к очень глубокой мысли, что пространство может быть искривлено, причем неодинаково в разных точках, и что со временем его кривизна может изменяться. Он даже допускал, что такие изменения как-то связаны с движением материи. Обе эти идеи спустя много лет легли в основу общей теории относительности. Сам Клиффорд до этого не дожил — он умер от туберкулеза в возрасте 34 лет за 11 дней до рождения Альберта Эйнштейна.

Красное смещение

Первые сведения о расширении Вселенной предоставила астроспектрография. В 1886 году английский астроном Уильям Хаггинс заметил, что длины волн звездного света несколько сдвинуты по сравнению с земными спектрами тех же элементов. Исходя из формулы оптической версии эффекта Допплера, выведенной в 1848 году французским физиком Арманом Физо, можно вычислить величину радиальной скорости звезды. Подобные наблюдения позволяют отследить движение космического объекта.


Еще сто лет назад представления о Вселенной базировались на ньютоновской механике и евклидовой геометрии. Даже немногие ученые, такие как Лобачевский и Гаусс, допускавшие (только как гипотезу!) физическую реальность неевклидовой геометрии, считали космическое пространство вечным и неизменным. Из-за расширения Вселенной судить о расстоянии до далеких галактик непросто. Свет, дошедший через 13 млрд лет от галактики A1689-zD1 в 3,35 млрд световых лет от нас (А), «краснеет» и ослабевает по мере преодоления расширяющегося пространства, а сама галактика удаляется (B). Он будет нести информацию о дистанции в красном смещении (13 млрд св. лет), в угловом размере (3,5 млрд св. лет), в интенсивности (263 млрд св. лет), тогда как реальное расстояние составляет 30 млрд св. лет.

Четверть века спустя эту возможность по‑новому использовал сотрудник обсерватории во Флагстаффе в штате Аризона Весто Слайфер, который с 1912 года изучал спектры спиральных туманностей на 24-дюймовом телескопе с хорошим спектрографом. Для получения качественного снимка одну и ту же фотопластинку экспонировали по нескольку ночей, поэтому проект двигался медленно. С сентября по декабрь 1913 года Слайфер занимался туманностью Андромеды и с помощью формулы Допплера-Физо пришел к выводу, что она ежесекундно приближается к Земле на 300 км.

В 1917 году он опубликовал данные о радиальных скоростях 25 туманностей, которые показывали значительную асимметрию их направлений. Только четыре туманности приближались к Солнцу, остальные убегали (и некоторые очень быстро).

Слайфер не стремился к славе и не пропагандировал свои результаты. Поэтому они стали известны в астрономических кругах, лишь когда на них обратил внимание знаменитый британский астрофизик Артур Эддингтон.


В 1924 году он опубликовал монографию по теории относительности, куда включил перечень найденных Слайфером радиальных скоростей 41 туманности. Там присутствовала все та же четверка туманностей с голубым смещением, в то время как у остальных 37 спектральные линии были сдвинуты в красную сторону. Их радиальные скорости варьировали в пределах 150 — 1800 км/с и в среднем в 25 раз превышали известные к тому времени скорости звезд Млечного Пути. Это наводило на мысль, что туманности участвуют в иных движениях, нежели «классические» светила.

Космические острова

В начале 1920-х годов большинство астрономов полагало, что спиральные туманности расположены на периферии Млечного Пути, а за его пределами уже нет ничего, кроме пустого темного пространства. Правда, еще в XVIII веке некоторые ученые видели в туманностях гигантские звездные скопления (Иммануил Кант назвал их островными вселенными). Однако эта гипотеза не пользовалась популярностью, поскольку достоверно определить расстояния до туманностей никак не получалось.

Эту задачу решил Эдвин Хаббл, работавший на 100-дюймовом телескопе-рефлекторе калифорнийской обсерватории Маунт-Вилсон. В 1923—1924 годах он обнаружил, что туманность Андромеды состоит из множества светящихся объектов, среди которых есть переменные звезды семейства цефеид. Тогда уже было известно, что период изменения их видимого блеска связан с абсолютной светимостью, и поэтому цефеиды пригодны для калибровки космических дистанций. С их помощью Хаббл оценил расстояние до Андромеды в 285 000 парсек (по современным данным, оно составляет 800 000 парсек). Диаметр Млечного Пути тогда полагали приблизительно равным 100 000 парсек (в действительности он втрое меньше). Отсюда следовало, что Андромеду и Млечный Путь необходимо считать независимыми звездными скоплениями. Вскоре Хаббл идентифицировал еще две самостоятельные галактики, чем окончательно подтвердил гипотезу «островных вселенных».


Справедливости ради стоит отметить, что за два года до Хаббла расстояние до Андромеды вычислил эстонский астроном Эрнст Опик, чей результат — 450000 парсек — был ближе к правильному. Однако он использовал ряд теоретических соображений, которые не были так же убедительны, как прямые наблюдения Хаббла.

К 1926 году Хаббл провел статистический анализ наблюдений четырех сотен «внегалактических туманностей» (этим термином он пользовался еще долго, избегая называть их галактиками) и предложил формулу, позволяющую связать расстояние до туманности с ее видимой яркостью. Несмотря на огромные погрешности этого метода, новые данные подтверждали, что туманности распределены в пространстве более или менее равномерно и находятся далеко за границами Млечного Пути. Теперь уже не приходилось сомневаться, что космос не замыкается на нашей Галактике и ее ближайших соседях.

Модельеры космоса

Эддингтон заинтересовался результатами Слайфера еще до окончательного выяснения природы спиральных туманностей. К этому времени уже существовала космологическая модель, в определенном смысле предсказывавшая эффект, выявленный Слайфером. Эддингтон много размышлял о ней и, естественно, не упустил случая придать наблюдениям аризонского астронома космологическое звучание.

Современная теоретическая космология началась в 1917 году двумя революционными статьями, представившими модели Вселенной, построенные на основе общей теории относительности. Одну из них написал сам Эйнштейн, другую — голландский астроном Виллем де Ситтер.

Законы Хаббла

Эдвин Хаббл эмпирически выявил примерную пропорциональность красных смещений и галактических дистанций, которую он с помощью формулы Допплера-Физо превратил в пропорциональность между скоростями и расстояниями. Так что мы имеем здесь дело с двумя различными закономерностями.
Хаббл не знал, как они связаны друг с другом, но что об этом говорит сегодняшняя наука?
Как показал еще Леметр, линейная корреляция между космологическими (вызванными расширением Вселенной) красными смещениями и дистанциями отнюдь не абсолютна. На практике она хорошо соблюдается лишь для смещений, меньших 0,1. Так что эмпирический закон Хаббла не точный, а приближенный, да и формула Допплера-Физо справедлива только для небольших смещений спектра.
А вот теоретический закон, связывающий радиальную скорость далеких объектов с расстоянием до них (с коэффициентом пропорциональности в виде параметра Хаббла V=Hd), справедлив для любых красных смещений. Однако фигурирующая в нем скорость V — вовсе не скорость физических сигналов или реальных тел в физическом пространстве. Это скорость возрастания дистанций между галактиками и галактическими скоплениями, которое обусловлено расширением Вселенной. Мы бы смогли ее измерить только в том случае, если были бы в состоянии останавливать расширение Вселенной, мгновенно протягивать мерные ленты между галактиками, считывать расстояния между ними и делить их на промежутки времени между измерениями. Естественно, что законы физики этого не позволяют. Поэтому космологи предпочитают использовать параметр Хаббла H в другой формуле, где фигурирует масштабный фактор Вселенной, который как раз и описывает степень ее расширения в различные космические эпохи (поскольку этот параметр изменяется со временем, его современное значение обозначают H0). Вселенная сейчас расширяется с ускорением, так что величина хаббловского параметра возрастает.
Измеряя космологические красные смещения, мы получаем информацию о степени расширения пространства. Свет галактики, пришедший к нам с космологическим красным смещением z, покинул ее, когда все космологические дистанции были в 1+z раз меньшими, нежели в нашу эпоху. Получить об этой галактике дополнительные сведения, такие как ее нынешняя дистанция или скорость удаления от Млечного Пути, можно лишь с помощью конкретной космологической модели. Например, в модели Эйнштейна — де Ситтера галактика с z = 5 отдаляется от нас со скоростью, равной 1,1 с (скорости света). А вот если сделать распространенную ошибку и просто уравнять V/c и z, то эта скорость окажется впятеро больше световой. Расхождение, как видим, нешуточное.
Зависимость скорости далеких объектов от красного смещения согласно СТО, ОТО (зависит от модели и времени, кривая показывает настоящее время и текущую модель). При малых смещениях зависимость линейная.

Эйнштейн в духе времени считал, что Вселенная как целое статична (он пытался сделать ее еще и бесконечной в пространстве, но не смог найти корректные граничные условия для своих уравнений). В итоге он построил модель замкнутой Вселенной, пространство которой обладает постоянной положительной кривизной (и поэтому она имеет постоянный конечный радиус). Время в этой Вселенной, напротив, течет по‑ньютоновски, в одном направлении и с одинаковой скоростью. Пространство-время этой модели искривлено за счет пространственной компоненты, в то время как временная никак не деформирована. Статичность этого мира обеспечивает специальный «вкладыш» в основное уравнение, препятствующий гравитационному схлопыванию и тем самым действующий как вездесущее антигравитационное поле. Его интенсивность пропорциональна особой константе, которую Эйнштейн назвал универсальной (сейчас ее называют космологической постоянной).


Космологическая модель Леметра, описывающая расширение Вселенной, намного опередила свое время. Вселенная Леметра начинается с Большого взрыва, после которого расширение сначала замедляется, а затем начинает ускоряться.

Эйнштейновская модель позволила вычислить размер Вселенной, общее количество материи и даже значение космологической постоянной. Для этого нужна лишь средняя плотность космического вещества, которую, в принципе, можно определить из наблюдений. Не случайно этой моделью восхищался Эддингтон и использовал на практике Хаббл. Однако ее губит неустойчивость, которую Эйнштейн просто не заметил: при малейшем отклонении радиуса от равновесного значения эйнштейновский мир либо расширяется, либо претерпевает гравитационный коллапс. Поэтому к реальной Вселенной такая модель отношения не имеет.

Пустой мир

Де Ситтер тоже построил, как он сам считал, статичный мир постоянной кривизны, но не положительной, а отрицательной. В нем присутствует эйнштейновская космологическая константа, но зато полностью отсутствует материя. При введении пробных частиц сколь угодно малой массы они разбегаются и уходят в бесконечность. Кроме того, время на периферии вселенной де Ситтера течет медленней, нежели в ее центре. Из-за этого с больших расстояний световые волны приходят с красным смещением, даже если их источник неподвижен относительно наблюдателя. Поэтому в 1920-е годы Эддингтон и другие астрономы задались вопросом: не имеет ли модель де Ситтера чего-нибудь общего с реальностью, отраженной в наблюдениях Слайфера?


Эти подозрения подтвердились, хоть и в ином плане. Статичность вселенной де Ситтера оказалась мнимой, поскольку была связана с неудачным выбором координатной системы. После исправления этой ошибки пространство де Ситтера оказалось плоским, евклидовым, но нестатичным. Благодаря антигравитационной космологической константе оно расширяется, сохраняя при этом нулевую кривизну. Из-за этого расширения длины волн фотонов возрастают, что и влечет за собой предсказанный де Ситтером сдвиг спектральных линий. Стоит отметить, что именно так сегодня объясняют космологическое красное смещение далеких галактик.

От статистики к динамике

История открыто нестатичных космологических теорий начинается с двух работ советского физика Александра Фридмана, опубликованных в немецком журнале Zeitschrift fur Physik в 1922 и 1924 годах. Фридман просчитал модели вселенных с переменной во времени положительной и отрицательной кривизной, которые стали золотым фондом теоретической космологии. Однако современники эти работы почти не заметили (Эйнштейн сначала даже счел первую статью Фридмана математически ошибочной). Сам Фридман полагал, что астрономия еще не обладает арсеналом наблюдений, позволяющим решить, какая из космологических моделей более соответствует реальности, и потому ограничился чистой математикой. Возможно, он действовал бы иначе, если бы ознакомился с результатами Слайфера, однако этого не случилось.


По-другому мыслил крупнейший космолог первой половины XX века Жорж Леметр. На родине, в Бельгии, он защитил диссертацию по математике, а затем в середине 1920-х изучал астрономию — в Кембридже под руководством Эддингтона и в Гарвардcкой обсерватории у Харлоу Шепли (во время пребывания в США, где он подготовил вторую диссертацию в МIT, он познакомился со Слайфером и Хабблом). Еще в 1925 году Леметру впервые удалось показать, что статичность модели де Ситтера мнимая. По возвращении на родину в качестве профессора Лувенского университета Леметр построил первую модель расширяющейся вселенной, обладающую четким астрономическим обоснованием. Без преувеличения, эта работа стала революционным прорывом в науке о космосе.

Вселенская революция

В своей модели Леметр сохранил космологическую константу с эйнштейновским численным значением. Поэтому его вселенная начинается статичным состоянием, но со временем из-за флуктуаций вступает на путь постоянного расширения с возрастающей скоростью. На этой стадии она сохраняет положительную кривизну, которая уменьшается по мере роста радиуса. Леметр включил в состав своей вселенной не только вещество, но и электромагнитное излучение. Этого не сделали ни Эйнштейн, ни де Ситтер, чьи работы были Леметру известны, ни Фридман, о котором он тогда ничего не знал.

Сопутствующие координаты

В космологических вычислениях удобно пользоваться сопутствующими координатными системами, которые расширяются в унисон с расширением Вселенной. В идеализированной модели, где галактики и галактические кластеры не участвуют ни в каких собственных движениях, их сопутствующие координаты не меняются. А вот дистанция между двумя объектами в данный момент времени равна их постоянной дистанции в сопутствующих координатах, умноженной на величину масштабного фактора для этого момента. Такую ситуацию легко проиллюстрировать на надувном глобусе: широта и долгота каждой точки не меняются, а расстояние между любой парой точек увеличивается с ростом радиуса.
Использование сопутствующих координат помогает осознать глубокие различия между космологией расширяющейся Вселенной, специальной теорией относительности и ньютоновской физикой. Так, в ньютоновской механике все движения относительны, и абсолютная неподвижность не имеет физического смысла. Напротив, в космологии неподвижность в сопутствующих координатах абсолютна и в принципе может быть подтверждена наблюдениями. Специальная теория относительности описывает процессы в пространстве-времени, из которого можно с помощью преобразований Лоренца бесконечным числом способов вычленять пространственные и временные компоненты. Космологическое пространство-время, напротив, естественно распадается на искривленное расширяющееся пространство и единое космическое время. При этом скорость разбегания далеких галактик может многократно превышать скорость света.

Леметр еще в США предположил, что красные смещения далеких галактик возникают из-за расширения пространства, которое «растягивает» световые волны. Теперь же он доказал это математически. Он также продемонстрировал, что небольшие (много меньшие единицы) красные смещения пропорциональны расстояниям до источника света, причем коэффициент пропорциональности зависит только от времени и несет информацию о текущем темпе расширения Вселенной. Поскольку из формулы Допплера-Физо следовало, что радиальная скорость галактики пропорциональна красному смещению, Леметр пришел к выводу, что эта скорость также пропорциональна ее удаленности. Проанализировав скорости и дистанции 42 галактик из списка Хаббла и приняв во внимание внутригалактическую скорость Солнца, он установил значения коэффициентов пропорциональности.

Незамеченная работа

Свою работу Леметр опубликовал в 1927 году на французском языке в малочитаемом журнале «Анналы Брюссельского научного общества». Считают, что это послужило основной причиной, из-за которой она поначалу осталась практически незамеченной (даже его учителем Эддингтоном). Правда, осенью того же года Леметр смог обсудить свои выводы с Эйнштейном и узнал от него о результатах Фридмана. У создателя ОТО не было технических возражений, однако он решительно не поверил в физическую реальность леметровской модели (подобно тому, как раньше не принял фридмановские выводы).


Графики Хаббла

Между тем в конце 1920-х годов Хаббл и Хьюмасон выявили линейную корреляцию между расстояниями до 24 галактик и их радиальными скоростями, вычисленными (в основном еще Слайфером) по красным смещениям. Хаббл сделал из этого вывод о прямой пропорциональности радиальной скорости галактики расстоянию до нее. Коэффициент этой пропорциональности сейчас обозначают H0 и называют параметром Хаббла (по последним данным, он немного превышает 70 (км/с)/мегапарсек).

Статья Хаббла с графиком линейной зависимости между галактическими скоростями и дистанциями была опубликована в начале 1929 года. Годом ранее молодой американский математик Хауард Робертсон вслед за Леметром вывел эту зависимость из модели расширяющейся Вселенной, о чем Хаббл, возможно, знал. Однако в его знаменитой статье эта модель ни прямо, ни косвенно не упоминалась. Позднее Хаббл высказывал сомнения, что фигурирующие в его формуле скорости реально описывают движения галактик в космическом пространстве, однако всегда воздерживался от их конкретной интерпретации. Смысл своего открытия он видел в демонстрации пропорциональности галактических расстояний и красных смещений, остальное предоставлял теоретикам. Поэтому при всем уважении к Хабблу считать его первооткрывателем расширения Вселенной нет никаких оснований.


И все-таки она расширяется!

Тем не менее Хаббл подготовил почву для признания расширения Вселенной и модели Леметра. Уже в 1930 году ей воздали должное такие мэтры космологии, как Эддингтон и де Ситтер; немногим позже ученые заметили и по достоинству оценили работы Фридмана. В 1931 году с подачи Эддингтона Леметр перевел на английский свою статью (с небольшими купюрами) для «Ежемесячных известий Королевского астрономического общества». В этом же году Эйнштейн согласился с выводами Леметра, а годом позже совместно с де Ситтером построил модель расширяющейся Вселенной с плоским пространством и искривленным временем. Эта модель из-за своей простоты долгое время была очень популярна среди космологов.

В том же 1931 году Леметр опубликовал краткое (и без всякой математики) описание еще одной модели Вселенной, объединявшей в себе космологию и квантовую механику. В этой модели начальным моментом выступает взрыв первичного атома (Леметр также называл его квантом), породивший и пространство, и время. Поскольку тяготение тормозит расширение новорожденной Вселенной, его скорость уменьшается — не исключено, что почти до нуля. Позднее Леметр ввел в свою модель космологическую постоянную, заставившую Вселенную со временем перейти в устойчивый режим ускоряющегося расширения. Так что он предвосхитил и идею Большого взрыва, и современные космологические модели, учитывающие присутствие темной энергии. А в 1933 году он отождествил космологическую постоянную с плотностью энергии вакуума, о чем до того никто еще не додумался. Просто удивительно, насколько этот ученый, безусловно достойный титула первооткрывателя расширения Вселенной, опередил свое время!

Мироздание не статично. Это подтвердили исследования астронома Эдвина Хаббла еще в 1929 году, то есть почти 90 лет назад. На эту мысль его навели наблюдения за движением галактик. Еще одним открытием астрофизиков в завершение двадцатого века стало вычисление расширения Вселенной с ускорением.

Как называют расширение Вселенной

Некоторые удивляются, услышав, как ученые называют расширение Вселенной. Это наименование у большинства связано с экономикой, причем с негативными ожиданиями.

Инфляция - это процесс расширения Вселенной сразу после её появления, причем с резким ускорением. В переводе с английского «инфляция» - «накачивать», «раздувать».

Новые сомнения о существовании темной энергии как фактора теории инфляции Вселенной используют противники теории расширения.

Тогда ученые предложили карту черных дыр. Первоначальные данные отличаются от тех, что были получены на позднем этапе:

  1. Шестьдесят тысяч черных дыр с расстоянием между самыми дальними больше одиннадцати миллионов световых лет - данные четырехлетней давности.
  2. Сто восемьдесят тысяч галактик с черными дырами с удалением в тринадцать миллионов световых лет. Данные, полученные учеными, в том числе российскими ядерными физиками, в начале 2017 года.

Эти сведения, говорят астрофизики, не противоречат классической модели Вселенной.

Скорость расширения Вселенной - задача для космологов

Скорость расширения действительно является задачей для космологов и астрономов. Правда, о том, что скорость расширения Вселенной не имеет постоянного параметра, космологи больше не спорят, расхождения перешли в другую плоскость - когда расширение начало ускоряться. Данные о кочевании в спектре очень далеких сверхновых галактик первого типа доказывают, что расширение - это не внезапно наступивший процесс.

Ученые считают, что первые пять миллиардов лет Вселенная сужалась.

Первые последствия Большого Взрыва сначала спровоцировали мощное расширение, а потом началось сжатие. Но темная энергия все-таки повлияла на рост мироздания. Причем с ускорением.

Американские ученые приступили к созданию карты размеров Вселенной для разных эпох, чтобы выяснить, когда началось ускорение. Наблюдая взрывы сверхновых, а также направление концентрации в древних галактиках, космологи заметили особенности ускорения.

Почему Вселенная «разгоняется»

Изначально подразумевалось, что в составленной карте значения ускорения не были линейны, а превратились в синусоиду. Ее назвали «волной Вселенной».

Волна Вселенной говорит о том, что ускорение не шло с постоянной скоростью: оно то замедлялось, то ускорялось. Причем несколько раз. Ученые считают, что было семь таких процессов за 13,81 миллиарда лет после Большого Взрыва.

Однако космологи пока не могут ответить на вопрос о том, от чего зависит ускорение-замедление. Предположения сводятся к мысли, что энергетическое поле, от которого берет начало темная энергия, подчинено волне Вселенной. И, переходя от одного положения к другому, Вселенная то расширяет ускорение, то замедляет его.

Несмотря на убедительность доводов, они все-таки остаются пока теорией. Астрофизики надеются, что информация орбитального телескопа «Планк» подтвердит существование волны Вселенной.

Когда нашли темную энергию

Впервые о ней заговорили в девяностые из-за взрывов сверхновых. Природа темной энергии неизвестна. Хотя еще Альберт Эйнштейн выделил космическую постоянную в своей теории относительности.

В 1916 году, сто лет назад, Вселенная еще считалась неизменной. Но сила притяжения вмешалась: космические массы неизменно бы ударились друг от друга, если бы Вселенная была недвижима. Эйнштейн объявляет гравитацию за счет космической силы отталкивания.

Жорж Леметр обоснует это через физику. Вакуум содержит энергию. Из-за её колебаний, приводящих к появлению частиц и дальнейшего их разрушения, энергия приобретает силу отталкивания.

Когда Хаббл доказал расширение Вселенной, Эйнштейн назвал чушью.

Влияние темной энергии

Мироздание раздвигается с постоянной скоростью. В 1998 году миру представили данные анализа вспышек сверхновых первого типа. Было доказано, что Вселенная разрастается все быстрее.

Происходит это из-за непознанного вещества, её прозвали «темной энергией». Выяснится, что она занимает почти 70 % пространства Вселенной. Суть, свойства и природа темной энергии не изучены, но её ученые пытаются выяснить, имелась ли она в других галактиках.

В 2016 году вычислили точную скорость расширения на ближайшее будущее, но появилось несовпадение: Вселенная расширяется с большей скоростью, чем ранее предположили астрофизики. В среде ученых разгорелись споры о существовании темной энергии и её влиянии на скорость расширения пределов мироздания.

Расширение Вселенной происходит без темной энергии

Теорию независимости процесса расширения Вселенной от темной энергии выдвинули ученые в начале 2017 года. Расширение они объясняют изменением структуры Вселенной.

Ученые из Будапештского и Гавайского университетов пришли к выводу, что несовпадение расчетов и реальной скорости расширения связаны с изменением свойств пространства. Никто не учитывал, что происходит с моделью Вселенной при расширении.

Усомнившись в существовании темной энергии, ученые объясняют: самые большие концентраты материи Вселенной влияют на её расширение. При этом остальное содержание распределяется равномерно. Однако факт остается неучтенным.

Для демонстрации обоснованности своих предположений ученые предложили модель мини-Вселенной. Они представили её в форме набора пузырьков и начали просчет параметров роста каждого пузырька с собственной скоростью, зависящей от его массы.

Такое моделирование Вселенной показало ученым, что она может изменяться без учета энергии. А если «примешать» темную энергию, то модель не изменится, считают ученые.

В общем-то, споры все еще продолжаются. Сторонники темной энергии говорят, что она влияет на расширение границ Вселенной, противники стоят на своем, утверждая, что значение имеет концентрация материи.

Скорость расширения Вселенной сейчас

Ученые убеждены, что расти Вселенная начала после Большого Взрыва. Тогда, почти четырнадцать миллиардов лет назад, оказалось, что скорость расширения Вселенной больше скорости света. И она продолжает расти.

В книге Стивена Хокинга и Леонарда Млодинова «Кратчайшая история времени» отмечается, что скорость расширения границ Вселенной не может превышать 10 % за миллиард лет.

Чтобы определить, какова скорость расширения Вселенной, летом 2016 года лауреат Нобелевской премии Адам Рисс рассчитал расстояние до пульсирующих цефеид в близких друг к другу галактиках. Эти данные позволили вычислить скорость. Выяснилось, что галактики на расстоянии не меньше трех миллионов световых лет могут отдаляться со скоростью почти 73 км/с.

Результат был удивителен: орбитальные телескопы, тот же «Планк», говорили о 69 км/с. Почему зафиксирована такая разница, ученые не в силах дать ответ: им ничего не известно о происхождении темной материи, на которую опирается теория расширения Вселенной.

Темная радиация

Еще один фактор «разгона» Вселенной обнаружили астрономы с помощью «Хаббла». Темное излучение, как предполагают, появилось в самом начале образования Вселенной. Тогда больше в ней было энергии, а не материи.

Темное излучение «помогло» темной энергии расширить границы Вселенной. Расхождения в определении скорости ускорения были из-за неизвестности этого излучения, считают ученые.

Дальнейшая работа «Хаббла» должна сделать наблюдения более точными.

Таинственная энергия может уничтожить Вселенную

Такой сценарий ученые рассматривают уже несколько десятилетий, данные космической обсерватории «Планк» говорят, что это далеко не только предположения. Их опубликовали в 2013 году.

«Планк» замерил «эхо» Большого взрыва, появившееся в возрасте Вселенной около 380 тысяч лет, температура составила 2 700 градусов. Причем температура менялась. «Планк» определил и «состав» Вселенной:

  • почти 5 % - звезды, космическая пыль, космический газ, галактики;
  • почти 27 % - масса темной материи;
  • около 70 % - темная энергия.

Физик Роберт Колдуэл предположил, что темная энергия обладает силой, способной нарастать. И эта энергия разъединит пространство-время. Галактика будет отдаляться в ближайшие двадцать-пятьдесят миллиардов лет, считает ученый. Этот процесс будет происходить при нарастающем расширении границ Вселенной. Это оторвет Млечный Путь от звезды, и он тоже распадется.

Космосу отмерили около шестидесяти миллионов лет. Солнце станет карликовой гаснущей звездой, и от нее отделятся планеты. После взорвется Земля. В следующие тридцать минут пространство разорвет атомы. Финалом станет разрушение структуры пространство-время.

Куда «улетает» Млечный Путь

Иерусалимские астрономы убеждены, что Млечный Путь набрал максимальную скорость, которая выше скорости расширения Вселенной. Ученые объясняют это стремлением Млечного Пути к «Великому Аттрактору», считающемуся самым крупным Так Млечный Путь уходит из космической пустыни.

Ученые используют разные методики измерения скорости расширения Вселенной, поэтому нет единого результата этого параметра.

Задачей современной астрономии является не только объяснение данных астрономических наблюдений, но и изучение эволюции Вселенной (от лат. evolution - - развертывание, развитие). Эти вопросы рассматривает космология – наиболее интенсивно развивающаяся область астрономии.

Изучение эволюции Вселенной основано на следующем:

· Универсальные физические законы считаются действующими во всей Вселенной.

· Выводы из результатов астрономических наблюдений признаются распространимыми на всю Вселенную.

· Истинными признаются только те выводы, которые не противоречат возможности существования самого наблюдателя, т. е. человека (антропный принцип).

При изучении Вселенной невозможно провести эмпирическую проверку результатов исследования, поэтому выводы космологии называют не законами, а моделями происхождения и развития Вселенной .

Модель (от лат. modulus – образец, норма)– это схема определенного фрагмента природной или социальной реальности (оригинала), возможный вариант его объяснения. В процессе развития науки старая модель заменяется новой моделью.

В основе современной космологии лежит эволюционный подход к вопросам возникновения и развития Вселенной, в соответствии с которым разработана модель расширяющейся Вселенной.

Ключевой предпосылкой создания модели эволюционирующей расширяющейся Вселенной послужила общая теория относительности А. Энштейна. Объектом теории относительности выступают физические события. Физические события характеризуют понятия пространства, времени, материи, движения , которые в теории относительности рассматриваются в единстве . Исходя из единства материи, пространства и времени следует, что с исчезновением материи исчезли бы и пространство, и время. Таким образом, до образования Вселенной не было ни пространства, ни времени. Эйнштейн вывел фундаментальные уравнения, связывающие распределение материи с геометрическими свойствами пространства, с ходом времени и на их основе в 1917 г. разработал статистическую модель Вселенной.

Согласно этой модели Вселенная обладает следующими свойствами:

· однородностью , т. е. имеет одинаковые свойства во всех точках;

· изотропностью, т. е. имеет одинаковые свойства по всем направлениям.

Из теории относительности следует, что искривленное пространство не может быть стационарным: оно должно или расширяться, или сужаться. Таким образом, Вселенная обладает еще одним свойством – нестационарностью . Впервые вывод о нестационарности Вселенной сделал А.А. Фридман, российский физик и математик, в 1922 г.

В 1929 г. американский астроном Эдвин Хаббл открыл так называемое «красное смещение».


Красное смещение – это понижение частот электромагнитного излучения: в видимой части спектра линии смещаются к его красному концу.

Сущность этого явления заключается в следующем: при удалении от нас какого-либо источника колебаний, воспринимаемая нами частота колебаний уменьшается, а длина волны, соответственно, увеличивается, поэтому при излучении происходит «покраснение», т. е. линии спектра сдвигаются в сторону более длинных красных волн. Э. Хаббл исследовал спектры дальних галактик и установил, что их спектральные линии смещены в сторону красных линий, что означает «разбегание» галактик. Последующие исследования показали: галактики с большой скоростью удаляются не только от наблюдателя, но и друг от друга. При этом скорость «разбегания» галактик, исчисляемая десятками тысяч километров в секунду, прямо пропорциональна расстоянию между ними. Так был установлен факт расширения Вселенной.

На основе результатов проведенных исследований Э. Хаббл сформулировал важный для космологии закон (закон Хаббла ):

Это означает, что Вселенная нестационарна: она находится в состоянии постоянного расширения.

Из положения о том, что Вселенная в настоящее время находится в состоянии расширения, ученые, оперируя математическими моделями, пришли к заключению, что когда-то, в далеком прошлом, она должна была находиться в сжатом состоянии. Расчеты показали, что 13–15 млрд. лет назад материя нашей Вселенной была сконцентрирована в необычайно малом объеме, около 10 -33 см 3 , и имела огромную плотность -- 10 93 г/см 3 при температуре 10 27 К. Следовательно, начальное состояние Вселенной – так называемая «сингулярная точка» -- характеризуется практически бесконечными плотностью и кривизной пространства, сверхвысокой температурой. Полагают, что наблюдаемая сейчас Вселенная возникла благодаря гигантскому взрыву этой исходной космической материи – Большому Взрыву Вселенной . Представление о Большом Взрыве является составной частью модели расширяющейся Вселенной. Концепция Большого Взрыва, логично объясняя многие моменты эволюции Вселенной, не отвечает на вопрос, из чего же она возникла. Эту задачу решает теория инфляции.

Теория инфляции, или теория раздувающейся Вселенной , возникла не в противовес, а в дополнение и развитие концепции Большого Взрыва. Как следует из этой теории, Вселенная возникла из ничего . «Ничего» в научной терминологии называется вакуумом . В соответствии с современными научными представлениями в вакууме отсутствуют физические частицы, поля и волны. Однако в нем имеются виртуальные частицы, которые рождаются за счет энергии вакуума и тут же исчезают. Когда вакуум по какой-то причине в некоторой точке возбудился и вышел из состояния равновесия, то виртуальные частицы стали захватывать энергию без отдачи и превращаться в реальные частицы. Этот период зарождения Вселенной и называют фазой раздувания (или инфляции). В фазе инфляции пространство нашей Вселенной увеличивается от миллиардной доли размера протона до нескольких сантиметров. Такое расширение в 10 50 раз больше, чем предполагалось в концепции Большого Взрыва. К концу фазы раздувания Вселенной образовалось огромное множество реальных частиц вместе со связанной ими энергией.

При разрушении возбужденного вакуума высвободилась гигантская энергия излучения, а некая суперсила сжала частицы в сверхплотную материю. Из-за необычайно высокой температуры и огромного давления Вселенная продолжала раздувание, но теперь уже с ускорением. В итоге сверхплотная и сверхгорячая материя взорвалась. В момент Большого Взрыва тепловая энергия превращается в механическую и гравитационную энергии масс. Это означает, что Вселенная рождается в соответствии с законом сохранения энергии.

Таким образом, основная идея теории инфляции состоит в том, что Вселенная на ранних стадиях своего возникновения имела неустойчивое вакуумоподобное состояние с большой плотностью энергии. Эта энергия, как и исходная материя, возникла из квантового вакуума, то есть из ничего. Объясняя происхождение Вселенной из возбужденного вакуума, теория инфляции пытается решить одну из основных проблем мироздания – проблему возникновения всего (Вселенной) из ничего (из вакуума).

В середине ХХ в. формулируется концепция горячей Вселенной . Согласно данной концепции, на ранних этапах расширения, вскоре после Большого Взрыва, Вселенная была очень горячей: излучение доминировало над веществом. При расширении температура падала, и с некоторого момента пространство стало для излучения практически прозрачным. Излучение, сохранившееся с начальных моментов эволюции (реликтовое излучение ), равномерно заполняет всю Вселенную до сих пор. Вследствие расширения Вселенной температура этого излучения продолжает падать. В настоящее время она составляет 2,7 К. Открытие реликтового излучения в 1965г. явилось наблюдательным обоснованием концепции горячей Вселенной. Было выявлено фундаментальное свойство Вселенной – она горячая . Таким образом, в соответствии с моделью, разработанной на основе теории относительности, расширяющаяся Вселенная -- однородная, изотропная, нестационарная и горячая.

Убедительными аргументами, подтверждающими обоснованность космологической модели расширяющейся Вселенной, являются установленные факты. К числу таких фактов относятся следующие:

· расширение Вселенной в соответствии с законом Хаббла;

· однородность светящейся материи на расстояниях порядка 100 мегапарсек;

· существование реликтового фона излучения с тепловым спектром, соответствующим температуре 2,7 К.

Возраст Вселенной, согласно современной космологической концепции ее происхождения и развития, исчисляется с начала расширения и оценивается в 13–15 млрд. лет. Современная астрономия интенсивно развивается: открыты новые космические объекты, установлены ранее неизвестные факты. К числу сравнительно недавно открытых космических объектов относятся квазары, нейтронные звезды, черные дыры.

Квазары -- мощные источники космического радиоизлучения, которые, как предполагают, являются самыми яркими и далекими из известных сейчас небесных объектов.

Нейтронные звезды – предполагаемые звезды, состоящие из нейтронов, образующиеся, вероятно, в результате вспышек сверхновых звезд.

Черные дыры (или «застывшие звезды», «гравитационные могилы») – объекты, в которые, как предполагают, превращаются звезды на заключительной стадии своего существования. Пространство черной дыры как бы вырвано из пространства Метагалактики: вещество и излучение проваливаются в нее и не могут выйти обратно.

О том, что Вселенная образовалась вследствие Большого взрыва, знает каждый школьник. И каждый студент знает о том, что Вселенная расширяется, как надувающийся воздушный шарик. Галактики удаляются друг от друга, о чём говорят простейшие физические эффекты.

В физике существует явление, которое называется эффект Допплера . С ним сталкивался каждый обыватель: когда мимо наблюдателя проезжает машина скорой помощи со включённым звуковым сигналом, то сначала звук кажется выше, а по мере удаления автомобиля — всё ниже (меняется частота звука). Этому есть простое объяснение: звук — это волны, которые проходят определённый путь до человеческого уха. По мере удлинения пути меняются и параметры приходящего сигнала.

Астрофизики опираются на эффект Допплера и когда рассматривают Вселенную в телескопы. Ещё в 1920-х годах Жорж Леметр (Georges Lemaître) и Эдвин Хаббл (Edwin Hubble) заметили, что все галактики имеют красноватый оттенок, и чем дальше расположена галактика, тем отчётливее заметно понижение частот приходящего излучения (так называемое красное смещение).

Свет также можно представить в виде волны, а значит эффект Допплера применим и к нему. Если не вдаваться в подробности, то удаляющиеся от наблюдателя предметы будут казаться красноватыми (красное смещение), а приближающиеся — синеватыми (синее смещение). Именно так родилась теория о том, что Вселенная расширяется.

С тех пор множество раз выдвигались и другие научные гипотезы, но ни одна из них не получила разумного подтверждения.

Сегодня немецкий физик-теоретик Христоф Веттерих (Christof Wetterich) из университета Гейдельберга предложил по-новому взглянуть на красноватый оттенок далёких галактик и забыть на время про эффект Допплера.

Атомы, из которых состоят все небесные (и не только небесные) тела, испускают характерный свет, зависящий от масс составляющих атомы элементарных частиц, а конкретнее — электронов. Если масса атома растёт, то испускаемый им фотон будет обладать более высокой энергией. Высокие энергии соотносятся с высокими частотами, а самая короткая длина волны (и самая высокая частота) — у фиолетового и синего света. Набирающие массу частицы будут синеватыми, а "худеющие" — красноватыми.

Но это вовсе не значит, что все галактики во Вселенной теряют массу. Поскольку скорость света хоть и недостижима, но конечна (около 300 тысяч километров в секунду в вакууме), чем дальше мы смотрим, тем более далёкие во времени события видим. К примеру, если астрономы говорят, что звезда находится в 20 тысячах световых лет от Земли, это значит, что мы видим её такой, какой она была 20 тысяч лет назад.

Если бы все тела обладали бы раньше меньшей массой, чем обладают сегодня, и постоянно бы "тяжелели", то все галактики выглядели бы красноватыми по сравнению с тем, как выглядят сейчас, и степень этого красного смещения была бы пропорциональна удалённости галактики от Земли. Собственно говоря, это именно то, что мы наблюдаем сегодня.

Если взглянуть на космос с этой точки зрения, то всё будет выглядеть иначе. Гипотеза Веттериха не исключает существование Большого взрыва и расширения Вселенной полностью. В её ранней истории был короткий период, описываемый инфляционной моделью , когда образовались элементарные частицы. Но до этого, согласно Веттериху, Большой взрыв был лишён сингулярности — бесконечной плотности Вселенной. Вместо этого Большой взрыв бесконечно растягивался во времени в прошлое. А сегодня космос уже статичен или даже схлопывается.

У этой стройной гипотезы существует лишь один большой недостаток: её невозможно проверить экспериментально. Когда мы говорим о постоянном "утяжелении" всех тел во Вселенной, нужно учитывать, что масса есть размерная величина, а значит, она может быть измерена лишь относительно чего-то. А если растёт масса даже эталона килограмма, хранящегося в Международном бюро мер и весов, то с чем мы будет сравнивать массы звёзд и галактик?

О своей гипотезе Веттерих которую можно почитать на сайте препринтов arXiv.org. И хотя она ещё требует экспертной оценки, пока что астрофизики в основном отзываются об идее положительно. По мнению коллег Веттериха, его гипотеза, как минимум, поможет физикам избежать однобокости мышления.

"Вся космология сегодня опирается на Стандартную модель, теорию Большого взрыва и расширения Вселенной. Я считаю, что прежде чем залезать в комфортные рамки одной научной теории, необходимо рассмотреть все альтернативные объяснения физических явлений", — прокомментировал исследование Архун Берера (Arjun Berera), физик и профессор университета Эдинбурга.

Сам Веттерих не считает свою гипотезу единственно верным объяснением всех процессов во Вселенной. Он говорит, что с помощью его модели можно будет по-другому взглянуть на некоторые явления. К примеру, физики уже пользуются различными интерпретациями квантовой механики, каждая из которых математически объяснима. В конце концов, отсутствие сингулярности Большого взрыва значительно упрощает понимание происхождения Вселенной.

Наиболее общепринятой в космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной, построенная на основе общей теории относительности и релятивистской теории тяготения, созданной Альбертом Эйнштейном в 1916 году. В основе этой модели лежат два предположения: 1) свойства Вселенной одинаковы во всех ее точках (однородность) и направлениях (изотропность); 2) наилучшим известным описанием гравитационного поля являются уравнения Эйнштейна. Из этого следуют так называемая «кривизна пространства» и связь кривизны с плотностью массы (энергии). Космология, основанная на этих постулатах, - релятивистская.

Важным пунктом данной модели является ее нестационарность. Это определяется двумя постулатами теории относительности: 1) принципом относительности, гласящим, что во всех инерционных системах все законы сохраняются вне зависимости от того, с какими скоростями, равномерно и прямолинейно, движутся эти системы друг относительно друга; 2) экспериментально подтвержденным постоянством скорости света.

Из принятия теории относительности вытекало в качестве – следствия (первым это заметил петроградский физик и математику Александр Александрович Фридман в 1922 году), что искривленное пространство не может быть стационарным: оно должно или расширяться, или сжиматься. На этот вывод не было обращено внимания, вплоть до открытия американским астрономом Эдвином Хабблом в 1929 году так называемого «красного смещения».

Красное смещение – это понижение частот электромагнитного излучения: в видимой части спектра линии смещаются к его красному концу. Обнаруженный ранее эффект Доплера гласил, что при удалении от нас какого-либо источника колебаний, воспринимаемая нами частота колебаний уменьшается, а длина волны соответственно увеличивается. При излучении происходит «покраснение», т. е. линии спектра сдвигаются в сторону более длинных красных волн.

Так вот, для всех далеких источников света красное смещение было зафиксировано, причем чем дальше находился источник, тем в большей степени. Красное смещение оказалось пропорционально расстоянию до источника, что и подтверждало гипотезу об удалении их, т.е. о расширении Метагалактики – видимой части Вселенной.

Красное смещение надежно подтверждает теоретический вывод о нестационарности области нашей Вселенной с линейными размерами порядка нескольких миллиардов парсек на протяжении, по меньшей мере, нескольких миллиардов лет. В то же время кривизна пространства не может быть измерена, оставаясь теоретической гипотезой.

Составной частью модели расширяющейся Вселенной является представление о Большом Взрыве, происшедшем где-то примерно 12 – 18 млрд. лет назад. «Вначале был взрыв. Не такой взрыв, который знаком нам на Земле и который начинается из определенного центра и затем распространяется, захватывая все больше и больше пространства, а взрыв, который произошел одновременно везде, заполнив с самого начала все пространство, причем каждая частица материи устремилась прочь от любой другой частицы» (Вейнберг С. Первые три минуты. Современный взгляд на происхождение Вселенной. М., 1981, с. 30).

Начальное состояние Вселенной (так называемая сингулярная точка): бесконечная плотность массы, бесконечная кривизна пространства и взрывное, замедляющееся со временем расширение при высокой температуре, при которой могла существовать только смесь элементарных частиц (включая фотоны и нейтрино). Горючесть начального состояния подтверждена открытием в 1965 году реликтового излучения фотонов и нейтрино, образовавшихся на ранней стадии расширения Вселенной.

Возникает интересный вопрос: из чего же образовалась Вселенная? Чем было то, из чего она возникла. В Библии утверждается, что Бог создал все из ничего. Зная, что в классической науке сформулированы законы сохранения материи и энергии, религиозные философы спорили о том, что значит библейское «ничего», и некоторые в угоду науке полагали, что под ничем имеется в виду первоначальный материальный хаос, упорядоченный Богом.

Как это ни удивительно, современная наука допускает (именно допускает, но не утверждает), что все могло создаться из ничего. «Ничего» в научной терминологии называется вакуумом. Вакуум, который физика XIX века считала пустотой, по современным научным представлениям является своеобразной формой материи, способной при определенных условиях «рождать» вещественные частицы.

Современная квантовая механика допускает (это не противоречит теории), что вакуум может приходить в «возбужденное состояние», вследствие чего в нем может образоваться поле, а из него (что подтверждается современными физическими экспериментами) вещество.

Рождение Вселенной «из ничего» означает, с современной научной точки зрения, ее самопроизвольное возникновение из вакуума, когда в отсутствии частиц происходит случайная флуктуация. Если число фотонов равно нулю, то напряженность поля не имеет определенного значения (по «принципу неопределенности» Гейзенберга): поле постоянно испытывает флуктуации, хотя среднее (наблюдаемое) значение напряженности равно нулю.

Флуктуация представляет собой появление виртуальных частиц, которые непрерывно рождаются и сразу же уничтожаются, но так же участвуют во взаимодействиях, как и реальные частицы. Благодаря флуктуациям вакуум приобретает особые свойства, проявляющиеся в наблюдаемых эффектах.

Итак, Вселенная могла образоваться из «ничего», т.е. из «возбужденного вакуума». Такая гипотеза, конечно, не является решающим подтверждением существования Бога. Ведь все это могло произойти в соответствии с законами физики естественным путем без вмешательства извне каких-либо идеальных сущностей. И в этом случае научные гипотезы не подтверждают и не опровергают религиозные догмы, которые лежат по ту сторону эмпирически подтверждаемого и опровергаемого естествознания.

На этом удивительное в современной физике не кончается. Отвечая на просьбу журналиста изложить суть теории относительности в одной фразе, Эйнштейн сказал: «Раньше полагали, что если бы из Вселенной исчезла вся материя, то пространство и время сохранились бы; теория относительности утверждает, что вместе с материей исчезли бы также пространство и время». Перенеся этот вывод на модель расширяющейся Вселенной, можно заключить, что до образования Вселенной не было ни пространства, ни времени.

Отметим, что теория относительности соответствует двум разновидностям модели расширяющейся Вселенной. В первой из них кривизна пространства-времени отрицательна или в пределах равна нулю; в этом варианте все расстояния со временем неограниченно возрастают. Во второй разновидности модели кривизна положительна, пространство конечно, и в этом случае расширение со временем заменяется сжатием. В обоих вариантах теория относительности согласуется с нынешним эмпирически подтвержденным расширением Вселенной.

Досужий ум неизбежно задается вопросами: что же было тогда, когда не было ничего, и что находится за пределами расширения. Первый вопрос, очевидно, противоречив сам по себе, второй выходит за рамки конкретной науки. Астроном может сказать, что как ученый он не вправе отвечать на такие вопросы. Но поскольку они все же возникают, формулируются и возможные обоснования ответов, которые являются не столько научными, сколько натурфилософскими.

Так, проводится различие между терминами «бесконечный» и «безграничный». Примером бесконечности, которая не безгранична, служит поверхность Земли: мы можем идти по ней бесконечно долго, но тем не менее она ограничена атмосферой сверху и земной корой снизу. Вселенная также может быть бесконечной, но ограниченной. С другой стороны, известна точка зрения, в соответствии с которой в материальном мире не может быть ничего бесконечного, потому что он развивается в виде конечных систем с петлями обратной связи, которыми эти системы создаются в процессе преобразования среды. Но оставим эти соображения области натурфилософии, потому что в естествознании в конечном счете критерием истины являются не абстрактные соображения, а эмпирическая проверка гипотез.

Что же было после Большого Взрыва? Образовался сгусток плазмы – состояния, в котором находятся элементарные частицы нечто среднее между твердым и жидким состоянием, который и начал расширяться все больше и больше под действием взрывной волны. Через 0,01 сек. после начала Большого Взрыва во Вселенной появилась смесь легких ядер (2/3 водорода и 1/3 гелия). Как образовались все остальные химические элементы?

Вселенная – самая крупная материальная система. Ее происхождение интересует людей еще с древних времен. В начале Вселенная была «безвидна и пуста», – так сказано в Библии. В начале был вакуум – уточняют современные физики. Каковы истоки происхождения Вселенной? Как она развивается? Какова ее структура? На эти и другие вопросы пытались ответить ученые разных времен. Однако даже крупнейшие достижения естествознания XX в. не позволяют дать исчерпывающие ответы. В этой связи нельзя не вспомнить строки известного поэта М. Волошина:

«Мы, возводя соборы космогонии, Не внешний в них отображаем мир, А только грани нашего незнания».

Тем не менее, принято считать, что основные положения современной космологии – науки о строении и эволюции Вселенной – начали формироваться после создания в 1917 году А. Эйнштейном первой релятивистской модели, основанной на теории гравитации и претендовавшей на описание всей Вселенной. Данная модель характеризовала стационарное состояние Вселенной и, как показали астрофизические наблюдения, оказалась неверной. Важный шаг в решении космологических проблем сделал в 1922 году профессор Петроградского университета А.А. Фридман (1888 – 1925). В результате решения космологических уравнений он пришел к выводу: Вселенная не может находиться в стационарном состоянии – она должна расширяться либо сужаться.

Следующий шаг был сделан в 1924 г., когда в обсерватории Маунт Вилсон в Калифорнии американский астроном Э. Хаббл (1889 – 1953) измерил расстояние до ближайших галактик (в то время называемых туманностями) и тем самым открыл мир галактик. В 1929 гогду в той же обсерватории Э. Хаббл по красному смещению линий в спектре излучения галактик экспериментально подтвердил теоретический вывод А.А. Фридмана о расширении Вселенной и установил эмпирический закон – закон Хаббла: скорость удаления галактики V прямо пропорциональна расстоянию до нее, т.е.:

Где Н – постоянная Хаббла.

С течением времени постоянная Хаббла постепенно уменьшается – разбегание галактик замедляется. Но такое уменьшение за наблюдаемый промежуток времени ничтожно мало. Обратной величиной постоянной Хаббла определяется время жизни (возраст) Вселенной. Из результатов наблюдения следует, что скорость разбегания галактик увеличивается примерно на 75 км/с на каждый миллион парсек (1 парсек равен 3,3 светового года; световой год – это расстояние, проходимое светом в вакууме за 1 земной год). При данной скорости экстраполяция к прошлому приводит к выводу: возраст Вселенной составляет около 15 млрд лет, а это означает, что вся Вселенная 15 млрд. лет назад была сосредоточена в очень маленькой области. Пред­полагается, что в то время плотность вещества Вселенной была не меньше плотности атомного ядра, и вся Вселенная представляла собой огромную ядерную каплю. По каким-то причинам ядерная капля оказалась в неустойчивом состоянии и взорвалась. Это предположение лежит в основе концепции большого взрыва.

Общее расширение между тем продолжается. Фотоны остаются равномерно распределенными в пространстве и до настоящего времени. Они-то и образуют уже упоминавшийся выше космический фон радиоизлучения – реликтовое излучение. Атомы же, наряду с общим расширением, образуют местные “сгущения” – звезды, квазары, галактики, скопления галактик. Тяжелые элементы рождаются позже – в процессах ядерного горения в звездах.