Меню
Бесплатно
Главная  /  Лекарства  /  Скорость распространения звука в воде металле газе. Распространение звука

Скорость распространения звука в воде металле газе. Распространение звука

Мы знаем, что звук распросраняется по воздуху. Именно потому мы и можем слышать. В вакууме никаких звуков существовать не может. Но если звук передается по воздуху, вследствие взаимодействия его частиц, не будет ли он передаваться и другими веществами? Будет.

Распространение и скорость звука в разных средах

Звук передается не только воздухом. Наверное, все знают, что если приложить ухо к стене, то можно услышать разговоры в соседней комнате. В данном случае звук передается стеною. Звуки распространяются и в воде, и в других средах. Более того, распространение звука в различных средах происходит по-разному. Скорость звука различается в зависимости от вещества.

Любопытно, что скорость распространения звука в воде почти в четыре раза выше, чем в воздухе. То есть, рыбы слышат «быстрее», чем мы. В металлах и стекле звук распространяется еще быстрее. Это происходит потому, что звук это колебания среды, и звуковые волны передаются быстрее в средах с лучшей проводимостью.

Плотность и проводимость воды больше, чем у воздуха, но меньше, чем у металла. Соответственно, и звук передается по-разному. При переходе из одной среды в другую скорость звука меняется.

Длина звуковой волны также меняется при ее переходе из одной среды в другую. Прежней остается лишь ее частота. Но именно поэтому мы и можем различить, кто конкретно говорит даже сквозь стены.

Так как звук это колебания , то все законы и формулы для колебаний и волн хорошо применимы к звуковым колебаниям . При расчете скорости звука в воздухе следует учитывать и то, что эта скорость зависит от температуры воздуха. При увеличении температуры скорость распространения звука возрастает. При нормальных условиях скорость звукав воздухе составляет 340 344 м/с.

Звуковые волны

Звуковые волны, как известно из физики, распространяются в упругих средах. Именно поэтому звуки хорошо передаются землей. Приложив ухо к земле, можно издалека услышать звук шагов, топот копыт и так далее.

В детстве все наверняка развлекались, прикладывая ухо к рельсам. Стук колес поезда передается по рельсам на несколько километров. Для создания обратного эффекта звукопоглощения, используют мягкие и пористые материалы.

Например, чтобы защитить от посторонних звуков какое-либо помещение, либо, наоборот, чтобы не допустить выхода звуков из комнаты наружу, помещение обрабатывают, звукоизолируют. Стены, пол и потолок обивают специальными материалами на основе вспененных полимеров. В такой обивке очень быстро затихают все звуки.

Большинство людей прекрасно понимают, что такое звук. Он ассоциируется со слухом и связан с физиологическими и психологическими процессами. В головном мозге осуществляется переработка ощущений, которые поступают через органы слуха. Скорость звука зависит от многих факторов.

Звуки, различаемые людьми

В общем смысле слова звук - это физическое явление, которое вызывает воздействие на органы слуха. Он имеет вид продольных волн различной частоты. Люди могут слышать звук, частота которого колеблется в пределах 16-20000 Гц. Эти упругие продольные волны, которые распространяются не только в воздухе, но и в других средах, достигая уха человека, вызывают звуковые ощущения. Люди могут слышать далеко не все. Упругие волны частотой меньше 16 Гц называют инфразвуком, а выше 20000 Гц - ультразвуком. Их человеческое ухо не может слышать.

Характеристики звука

Различают две основные характеристики звука: громкость и высоту. Первая из них связана с интенсивностью упругой звуковой волны. Существует и другой важный показатель. Физической величиной, которая характеризует высоту, является частота колебаний упругой волны. При этом действует одно правило: чем она больше, тем звук выше, и наоборот. Еще одной важнейшей характеристикой является скорость звука. В разных средах она бывает различной. Она представляет собой скорость распространения упругих звуковых волн. В газовой среде этот показатель будет меньше, чем в жидкостях. Скорость звука в твердых телах самая высокая. При этом для волн продольных она всегда больше, чем для поперечных.

Скорость распространения звуковых волн

Этот показатель зависит от плотности среды и ее упругости. В газовых средах на него действует температура вещества. Как правило, скорость звука не зависит от амплитуды и частоты волны. В редких случаях, когда эти характеристики оказывают влияние, говорят о так называемой дисперсии. Скорость звука в парах или газах колеблется в пределах 150-1000 м/с. В жидких средах она составляет уже 750-2000 м/с, а в твердых материалах - 2000-6500 м/с. В нормальных условиях скорость звука в воздухе достигает 331 м/с. В обычной воде - 1500 м/с.

Скорость звуковых волн в разных химических средах

Скорость распространения звука в разных химических средах неодинакова. Так, в азоте она составляет 334 м/с, в воздухе - 331, в ацетилене - 327, в аммиаке - 415, в водороде - 1284, в метане - 430, в кислороде - 316, в гелии - 965, в угарном газе - 338, в углекислоте - 259, в хлоре - 206 м/с. Скорость звуковой волны в газообразных средах возрастает с повышением температуры (Т) и давления. В жидкостях она чаще всего уменьшается при увеличении Т на несколько метров за секунду. Скорость звука (м/с) в жидких средах (при температуре 20°С):

Вода - 1490;

Этиловый спирт - 1180;

Бензол - 1324;

Ртуть - 1453;

Углерод четыреххлористый - 920;

Глицерин - 1923.

Из вышеуказанного правила исключением является только вода, в которой с ростом температуры увеличивается и скорость звука. Своего максимума она достигает при нагревании этой жидкости до 74°С. При дальнейшем повышении температуры скорость звука уменьшается. При увеличении давления она будет увеличиваться на 0,01%/1 Атм. В соленой морской воде с ростом температуры, глубины и солености будет повышаться и скорость звука. В других средах этот показатель изменяется по-разному. Так, в смеси жидкости и газа скорость звука зависит от концентрации ее составляющих. В изотопном твердом теле она определяется его плотностью и модулями упругости. В неограниченных плотных средах распространяются поперечные (сдвиговые) и продольные упругие волны. Скорость звука (м/с) в твердых веществах (продольной/поперечной волны):

Стекло - 3460-4800/2380-2560;

Плавленый кварц - 5970/3762;

Бетон - 4200-5300/1100-1121;

Цинк - 4170-4200/2440;

Тефлон - 1340/*;

Железо - 5835-5950/*;

Золото - 3200-3240/1200;

Алюминий - 6320/3190;

Серебро - 3660-3700/1600-1690;

Латунь - 4600/2080;

Никель - 5630/2960.

В ферромагнетиках скорость звуковой волны зависит от величины напряженности магнитного поля. В монокристаллах скорость звуковой волны (м/с) зависит от направления ее распространения:

  • рубин (продольная волна) - 11240;
  • сульфид кадмия (продольная/поперечная) - 3580/4500;
  • ниобат лития (продольная) - 7330.

Скорость звука в вакууме равняется 0, поскольку в такой среде он просто не распространяется.

Определение скорости звука

Все то, что связано со звуковыми сигналами, интересовало наших предков еще тысячи лет назад. Над определением сущности этого явления работали практически все выдающиеся ученые древнего мира. Еще античные математики установили, что звук обуславливается колебательными движениями тела. Об этом писали Евклид и Птолемей. Аристотель установил, что скорость звука отличается конечной величиной. Первые попытки определения данного показателя были предприняты Ф. Бэконом в XVII в. Он пытался установить скорость путем сравнения временных промежутков между звуком выстрела и вспышкой света. На основании этого метода группа физиков Парижской Академии наук впервые определила скорость звуковой волны. В различных условиях эксперимента она составляла 350-390 м/с. Теоретическое обоснование скорости звука впервые в своих «Началах» рассмотрел И. Ньютон. Произвести правильное определение этого показателя получилось у П.С. Лапласа.

Формулы скорости звука

Для газообразных сред и жидкостей, в которых звук распространяется, как правило, адиабатически, изменение температуры, связанное с растяжениями и со сжатиями в продольной волне, не может быстро выравниваться за короткий период времени. Очевидно, что на этот показатель влияет несколько факторов. Скорость звуковой волны в однородной газовой среде или жидкости определяется по следующей формуле:

где β - адиабатическая сжимаемость, ρ - плотность среды.

В частных производных данная величина считается по такой формуле:

c 2 = -υ 2 (δρ/δυ) S = -υ 2 Cp/Cυ (δρ/δυ) T ,

где ρ, T, υ - давление среды, ее температура и удельный объем; S - энтропия; Cp - изобарная теплоемкость; Cυ - изохорная теплоемкость. Для газовых сред эта формула будет выглядеть таким образом:

c 2 = ζkT/m= ζRt/M = ζR(t + 273,15)/M = ά 2 T,

где ζ - величина адиабаты: 4/3 для многоатомных газов, 5/3 для одноатомных, 7/5 для двухатомных газов (воздух); R - газовая постоянная (универсальная); T - абсолютная температура, измеряемая в кельвинах; k - постоянная Больцмана; t - температура в °С; M - молярная масса; m - молекулярная масса; ά 2 = ζR/ M.

Определение скорости звука в твердом теле

В твердом теле, обладающем однородностью, существует два вида волн, различающихся поляризацией колебаний по отношению направления их распространения: поперечная (S) и продольная (P). Скорость первой (C S) всегда будет ниже, чем второй (C P):

C P 2 = (K + 4/3G)/ρ = E(1 - v)/(1 + v)(1-2v)ρ;

C S 2 = G/ρ = E/2(1 + v)ρ,

где K, E, G - модули сжатия, Юнга, сдвига; v - коэффициент Пуассона. Во время расчета скорости звука в твердом теле используются адиабатические модули упругости.

Скорость звука в многофазных средах

В многофазных средах благодаря неупругому поглощению энергии скорость звука находится в прямой зависимости от частоты колебаний. В двухфазной пористой среде она рассчитывается по уравнениям Био-Николаевского.

Заключение

Измерение скорости звуковой волны используется при определении различных свойств веществ, таких как модули упругости твердого тела, сжимаемость жидкостей и газа. Чувствительным методом определения примесей является измерение малых изменений скорости звуковой волны. В твердых телах колебание этого показателя позволяет проводить исследования зонной структуры полупроводников. Скорость звука является очень важной величиной, измерение которой позволяет узнать многое о самых разных средах, телах и других объектах научных исследований. Без умения ее определять были бы невозможны многие научные открытия.

СКОРОСТЬ ЗВУКА - скорость распространения в среде . Определяется упругостью и плотностью среды. Для , бегущей без изменения формы со скоростью с в направлении оси х , звуковое давление р можно представить в виде р = р(х - - ct) , где t - время. Для плоской гармония, волны в среде без дисперсии и С. з. выражается через частоту w и k ф-лой с = w/k. Со скоростью с распространяется фаза гармонич. волны, поэтому с наз. также фазовой С. з. В средах, в к-рых форма произвольной волны меняется при распространении, гармонич. волны тем не менее сохраняют свою форму, но фазовая скорость оказывается различной для разных частот, т. е. имеет место дисперсия звука .В этих случаях пользуются также понятием групповой скорости . При больших амплитудах упругой волны появляются нелинейные эффекты (см. Нелинейная акустика ),приводящие к изменению любых волн, в т. ч. и гармонических: скорость распространения каждой точки профиля волны зависит от величины давления в этой точке, возрастая с ростом давления, что и приводит к искажению формы волны.

Скорость звука в газах и жидкостях . В газах и жидкостях звук распространяется в виде объёмных волн сжатия - разряжения. Если процесс распространения происходит адиабатически (что, как правило, и имеет место), т. е. изменение темп-ры в звуковой волне не успевает выравниваться и за 1 / 2 , периода тепло из нагретых (сжатых) участков не успевает перейти к холодным (разреженным), то С. з. равна , где Р - давление в веществе, - его плотность, а индекс s показывает, что производная берётся при постоянной энтропии. Эта С. з. наз. адиабатической. Выражение для С. з. может быть записано также в одной из следующих форм:

где К ад - адиабатич. модуль всестороннего сжатия вещества, - адиабатич. сжимаемость, - изотермич. сжимаемость, = - отношение теплоёмкостей при постоянных давлении и объёме.

В ограниченных твёрдых телах кроме продольных и поперечных волн имеются и др. типы волн. Так, вдоль свободной поверхности твёрдого тела или вдоль границы его с др. средой распространяются поверхностные акустические волны , скорость к-рых меньше скорости объёмных волн, характерных для данного материала. Для пластин, стержней и др. твёрдых акустич. волноводов характерны нормальные волны ,скорость к-рых определяется не только свойствами вещества, но и геометрией тела. Так, напр., С. з. для продольной волны в стержне с ст, поперечные размеры к-рого много меньше длины волны звука, отличается от С. з. в неограниченной среде с l (табл. 3):

Методы измерения С.з. можно подразделить на резонансные, интерферометрические, импульсные и оптические (см. Дифракция света на ультразвуке ).Наиб. точности измерения достигают с помощью импульсно-фазовых методов. Оптич. методы дают возможность измерять С. з. на гиперзвуковых частотах (вплоть до 10 11 -10 12 Гц). Точность абс. измерений С. з. на лучшей аппаратуре ок. 10 -3 % , тогда как точность относит. измерений порядка 10 -5 % (напр., при изучении зависимости с от темп-ры или магн. поля пли от концентрации примесей или дефектов).

Измерения С. з. используются для определения мн. свойств вещества, таких, как величина отношения теплоёмкостей для газов, сжимаемости газов и жидкостей, модулей упругости твёрдых тел, дебаевской темп-ры и др. (см. Молекулярная акустика) . Определение малых изменений С. з. является чувствит. методом фиксирования примесей в газах и жидкостях. В твёрдых телах измерение С. з. и её зависимости от разл. факторов (темп-ры, магн. поля и др.) позволяет исследовать строение вещества: зонную структуру полупроводников, строение поверхности Ферми в металлах и пр.

Лит.: Ландау Л. Д., Л и ф ш и ц Е. М., Теория упругости, 4 изд., М., 1987; их же, Гидродинамика, 4 изд., М., 1988; Бергман Л., и его применение в науке и технике, пер. с нем., 2 изд., М., 1957; Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964; Таблицы для расчета скорости звука в морской воде, Л., 1965; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 1, ч. А, М., 1966, гл. 4; т. 4, ч. Б, М., 1970, гл. 7; Колесников А. Е., Ультразвуковые измерения, 2 изд., М., 1982; Т р у э л л Р., Э л ь б а у м Ч., Ч и к Б., Ультразвуковые методы в физике твердого тела, пер. с англ., М., 1972; Акустические кристаллы, под ред. М. П. Шаскольской, М., 1982; Красильни ков В. А., Крылов В. В., Введение в физическую акустику, М., 1984. А. Л. Полякова .

СКОРОСТЬ ЗВУКА

СКОРОСТЬ ЗВУКА

Перемещения в среде упругой при условии, что форма её профиля остаётся неизменной. Скорость гармонической волны наз. также фазовой скоростью звука. Обычно С. з.- величина постоянная для данного в-ва при заданных внеш. условиях и не зависит от частоты волны и её амплитуды. В тех случаях, когда оказывается различной для разных частот, говорят о дисперсии звука.

Для газов и жидкостей, где распространяется обычно адиабатически (т. е. изменение темп-ры, связанное со сжатиями и разряжениями в звук. волне, не успевает выравниваться за период), С. з. выражается так:

с=?(Kад/r)=?(1/bадr).

с=?(gp0/r)=?(gRT/m). (ф-ла Лапласа),

где g=Cp/Cv - отношение теплоёмкостей при постоянных давлении и объёме, р0 - среднее в среде, R - универс. , m - мол. газа. С. з. в газах меньше, чем в жидкостях, а в жидкостях меньше, как правило, чем в тв. телах, поэтому при сжижении газа С. з. возрастает. Ниже приведены значения С. з. (м/с) для нек-рых газов и жидкостей, причём в тех случаях, когда имеется дисперсия С. з., приведены её значения для малых частот, когда период звуковой волны больше, чем релаксации.

СКОРОСТЬ ЗВУКА В ГАЗАХ ПРИ 0°С И ДАВЛЕНИИ 1 ATM

Азот.........……... 334

Кислород........... 316

Воздух............ … 331

Гелий............. … 965

Водород.......... 1284

Метан............. ... 430

Аммиак............ .. 415

С. з. в газах растёт с ростом темп-ры и давления (при комнатной темп-ре относит. изменение С. з. в воздухе составляет примерно 0,17% при изменении темп-ры на 1°С). В жидкостях С. з., как правило, уменьшается с ростом темп-ры на неск. м/с на 1°С;

СКОРОСТЬ ЗВУКА В ЖИДКОСТЯХ ПРИ 20°С

Вода........………………..... 1490

Бензол..........………………. 1324

Спирт этиловый.....…………. 1180

Ртуть...........…………………. 1453

Глицерин....………………..... 1923

исключением из этого правила явл. вода, в к-рой С. з. увеличивается с ростом темп-ры и достигает максимума при темп-ре 74°С, а с дальнейшим ростом темп-ры уменьшается. С увеличением давления С. з. в воде увеличивается примерно на 0,01% на 1 атм. В морской воде С. з. увеличивается с ростом темп-ры, солёности и глубины, что определяет ход звук. лучей в море, в частности существование подводного звукового канала.

С. з. в смесях газов или жидкостей зависит от концентрации компонентов смеси.

С. з. в изотропных тв. телах определяется модулями упругости в-ва и его плотностью. В неограниченной тв. среде распространяются продольные и сдвиговые (поперечные) , причём фазовая С. з. для продольной волны равна:

а для сдвиговой:

где Е - модуль Юнга, G - модуль сдвига, v - коэфф. Пуассона, К - модуль объёмного сжатия. Скорость распространения продольных волн всегда больше, чем скорость сдвиговых волн (см. табл.). В тв. телах огранич. размеров имеются и др. типы волн, напр. , скорость к-рых меньше сl и ct. В пластинах, стержнях и др. тв. волноводах распространяются , скорость к-рых определяется не только хар-ками в-ва, но и геом. параметрами тела. С. з. для продольной волны в тонком стержне равна сl ст= ?(Е/r). В монокрист. тв. телах С. з. зависит от направления распространения волны относительно кристаллографич. осей. Во многих в-вах С. з. зависит от наличия посторонних примесей. В металлах и сплавах С. з. существенно зависит от обработки, к-рой они были подвергнуты (прокат, ковка, отжиг и т. п.). В пьезоэлектриках и сегнетоэлектриках С. з. определяется не только модулями упругости, но и пьезомодулями, а также может зависеть от напряжённости электрич. поля.

СКОРОСТЬ ЗВУКА В НЕКОТОРЫХ ТВЁРДЫХ ВЕЩЕСТВАХ


В ферромагнетиках С. з. зависит от напряжённости магн. поля.

Измерение С. з. используется для определения многих св-в в-ва, таких, как сжимаемость газов и жидкостей, твёрдых тел, дебаевская темп-ра и др. Измерение малых изменений С. з. явл. чувствит. методом определения наличия примесей в газах и жидкостях. В тв. телах измерения С. з. и её зависимости от разных факторов позволяют исследовать зонную структуру полупроводников, строение Ферми поверхностей в металлах и пр. Ряд контрольно-измерит. применений УЗ в технике осн. на измерениях С. з.

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

СКОРОСТЬ ЗВУКА

Скорость распространения в среде упругой волны. с в направлении оси х, звуковоедавление р можно представить в виде р = р(х - - ct), где t - время. Для плоской гармония, волны в среде без дисперсии и С. з. выражается через частоту w и k ф-лой с= w/k. Со скоростью с распространяется гармонич. волны, с наз. также фазовой С. з. В средах, в к-рых форма произвольнойволны меняется при распространении, гармонич. волны тем не менее сохраняютсвою форму, но фазовая скорость оказывается различной для разных частот, дисперсия звука. В этих случаях пользуются такжепонятием групповой скорости. При больших амплитудах упругой волныпоявляются нелинейные эффекты (см. Нелинейная акустика), приводящиек изменению любых волн, в т. ч. и гармонических: скорость распространениякаждой точки профиля волны зависит от величины давления в этой точке, возрастаяс ростом давления, что и приводит к искажению формы волны.

Скорость звука в газах и жидкостях. В газах и жидкостях звукраспространяется в виде объёмных волн сжатия - разряжения. Если процессраспространения происходит адиабатически (что, как правило, и имеет место),т. е. изменение темп-ры в звуковой волне не успевает выравниваться и за 1 / 2 , периода тепло из нагретых (сжатых) участковне успевает перейти к холодным (разреженным), то С. з. равна , где Р - давление в веществе,- его плотность, а индекс s показывает, что производная берётсяпри постоянной энтропии. Эта С. з. наз. адиабатической. Выражение для С.

где К ад - адиабатич. модуль всестороннего сжатия вещества,- адиабатич. сжимаемость,- изотермич. сжимаемость,= - отношениетеплоёмкостей при постоянных давлении и объёме.

В идеальном газе , где R = = 8,31 Дж/моль*К - универсальная газовая постоянная, Т - абс. -молекулярная масса газа. Это т. н. л а п л а с о в а С. з. В газе она совпадаетпо порядку величины со средней тепловой скоростью движения молекул. Величину называютн ь ю т о н о в о й С. з., она определяет С. з. при изотермич. процессераспространения, к-рый может иметь место на очень низких частотах. В большинствеслучаев С. з. соответствует лапласову значению.

С. з. в газах меньше, чем в жидкостях, а в жидкостях, как правило, меньше, В идеальных газах при заданной темп-ре С. з. не зависит от давленияи растёт с ростом темп-ры как . Изменение С. з. равно , где и - малыеприращения скорости н темп-ры по сравнению с их значениями с и Т. При комнатной темп-ре относит. изменение С. з. в воздухе составляетпримерно 0,17% на 1 К. В жидкостях С. з., как правило, уменьшается с ростомтемп-ры и изменение её составляет, напр.. для ацетона -5,5 м/с*К, для этиловогоспирта -3,6 м/с * К. Исключением из этого правила является вода, в к-ройС. з. при комнатной темп-ре увеличивается с ростом темп-ры на 2,5 м/с*К, Табл. 1- Скорость звука в некоторых газах при °С*

Кислород

Углекислый газ

Йодистый водород

* Значения скорости даны для нормального давления.

Табл. 2- Скорость звука в некоторых жидкостях при 20 °С

Спирт этиловый

Четырёххлористый углерод

Глицерин

В морской воде С. з. зависит от темп-ры, солёности и глубины. Эти зависимостиимеют сложный вид. Для расчёта С. з. в море используются таблицы, рассчитанныепо эмпирия, ф-лам. Поскольку темп-pa, давление, а иногда и солёность меняютсяс глубиной, то С. з. в океане является ф-цией глубины c(z). Этазависимость существенно определяет характер распространения звука в океане(см. Гидроакустика). В частности, она определяет существование подводногозвукового канала, положение оси к-рого и др. характеристики зависятот времени года, времени суток и от география, местоположения.

В сжиженных газах С. з. увеличивается при той же темп-ре: напр., в газообразномазоте при темп-ре -195 °С она равна 176 м/с, в жидком азоте при той жетемп-ре 859 м/с, в газообразном и жидком гелии при -269 °С соответственно102 м/с и 198 м/с.

С. з. в смесях газов или жидкостей зависит от концентрации компонент. , в к-poй в качестве взята смеси, определяемая молекулярными массами компонентовс учётом их концентрации. В жидких смесях зависимость С. з. от концентрациикомпонентов имеет довольно сложный характер, к-рый связан с видом межмолекулярныхвзаимодействий. Так, в спиртоводных и кислотоводных смесях при нек-ройконцентрации имеется максимум С. измерение С. з. может использоватьсядля определения и контроля концентрации компонент смесей и растворов.

В жидком гелии С. з. увеличивается при понижении темп-ры. При фазовомпереходе в сверхтекучее состояние возникает излом на кривой зависимостиС. з. от темп-ры.

В многоатомных газах и практически во всех жидкостях имеется дисперсияС. з., причём в жидкостях она проявляется на высоких УЗ- и гиперзвуковыхчастотах.

В резинах, полимерах и каучуках С. з. зависит от хим. состава и плотностиупаковки макромолекул и растёт с увеличением частоты; в материалах этоготипа с меньшей плотностью и С. з. меньше, напр. в силиконовом каучуке С. Скорость звука в твёрдых телах. В неограниченной твёрдой средераспространяются продольные и сдвиговые (поперечные) упругие волны. В изотропномтвёрдом теле фазовая скорость для продольной волны

для сдвиговой волны

где Е - модуль Юнга, G - модуль сдвига,- коэф. Пуассона, К - модуль объёмного сжатия. Скорость распространенияпродольных волн всегда больше, чем скорость сдвиговых волн, причём обычновыполняется соотношение . Значения с l и c t для нек-рых изотропныхтвёрдых тел приведены в табл. 3.

Табл. 3 -Скорость звука в некоторых изотропных твёрдых телах

В монокристаллах С. з. зависит от направления распространения волныв кристалле (см. Кристаллоакустика). В тех направлениях, в к-рыхвозможно распространение чисто продольных и чисто поперечных волн, в общемслучае имеется одно значение с l и два значения c t . Если значения c t различны, то соответствующие волныиногда наз. быстрой и медленной поперечными волнами. В общем случае длякаждого направления распространения волны в кристалле могут существоватьтри смешанные волны с разными скоростями распространения, к-рые определяютсясоответствующими комбинациями модулей упругости, причём векторы колебат. Во мн. веществах С. з. зависит от наличия посторонних примесей. В полупроводникахи диэлектриках С. з. чувствительна к концентрации примесей; так, при легированииполупроводника примесью, увеличивающей число носителей тока, С. з. уменьшаетсяс увеличением концентрации; при увеличении темп-ры С. з. слабо увеличивается.

В металлах и сплавах С. з. существенно зависит от предшествующей механическойи термообработки: прокат, ковка, отжиг и т. п. Частично это явление связанос дислокациями, наличие к-рых также влияет на С. з.

Табл. 4 - Скорость звука в некоторых монокристаллах

В металлах, как правило, С. з. уменьшается с ростом темп-ры. При переходеметалла в сверхпроводящее состояние характер зависимости иной: величина дс/дТ в точке перехода меняет знак. В сильных магн. полях проявляютсянек-рые эффекты в зависимости С. з. от магн. поля, к-рые отражают особенностиповедения электронов в монокристалле металла. Так, при распространениизвука по нек-рым направлениям в кристалле появляются С. з. какф-ции магн. поля. Измерения зависимости С. з. от магн. поля являются чувствит. В пьезоэлектриках и сегнетоэлектриках наличие электромеханич. Аналогичное явление наблюдается и в магнитострикционных материалах, где наличие магнитоупругой связи приводит, кроме того, к появлениюзаметной зависимости С. з. от напряжённости магн. поля, обусловленной т. -эффектом, Е от величины магн. поля Н. ИзмененияС. з. с ростом Н могут достигать неск. процентов (иногда до десятковпроцентов). Такая же зависимость С. з. от напряжённости электрич. полянаблюдается в сегнетоэлектриках. При действии на статич. моханич. В ограниченных твёрдых телах кроме продольных и поперечных волн имеютсяи др. типы волн. Так, вдоль свободной поверхности твёрдого тела или вдольграницы его с др. средой распространяются поверхностные акустическиеволны, скорость к-рых меньше скорости объёмных волн, характерных дляданного материала. Для пластин, стержней и др. твёрдых акустич. волноводовхарактерны нормальные волны, скорость к-рых определяется не толькосвойствами вещества, но и геометрией тела. Так, напр., С. з. для продольнойволны в стержне с ст, поперечные размеры к-рого много меньшедлины волны звука, отличается от С. з. в неограниченной среде с l (табл. 3):

Методы измерения С. Дифракция света на ультразвуке). Наиб. точность относит. измеренийпорядка 10 -5 % (напр., при изучении зависимости с оттемп-ры или магн. поля пли от концентрации примесей или дефектов).

Измерения С. з. используются для определения мн. свойств вещества, таких, Молекулярнаяакустика). Определение малых изменений С. з. является чувствит. методомфиксирования примесей в газах и жидкостях. В твёрдых телах измерение С. Лит.: Ландау Л. Д., Л и ф ш и ц Е. М., Теория упругости, 4 изд.,М., 1987; их же, Гидродинамика, 4 изд., М., 1988; Бергман Л., Ультразвуки его применение в науке и технике, пер. с нем., 2 изд., М., 1957; МихайловИ. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М.,1964; Таблицы для расчета скорости звука в морской воде, Л., 1965; Физическаяакустика, под ред. У. Мэзона, пер. с англ., т. 1, ч. А, М., 1966, гл. 4;т. 4, ч. Б, М., 1970, гл. 7; Колесников А. Е., Ультразвуковые измерения,2 изд., М., 1982; Т р у э л л Р., Э л ь б а у м Ч., Ч и к Б., Ультразвуковыеметоды в физике твердого тела, пер. с англ., М., 1972; Акустические , А. Л. Полякова.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Большая советская энциклопедия

Скорость распространения звуковых волн в среде. В газах скорость звука меньше, чем в жидкостях, а в жидкостях меньше, чем в твердых телах (причем для сдвиговых волн скорость всегда меньше, чем для продольных). скорость звука в газах и парах от… … Большой Энциклопедический словарь

скорость звука - скорость распространения акустических волн 1. Скорость распространения упругой волны в среде. Единица измерения м/с 2. Фазовая или групповая скорость акустической волны в недисперсионном материале для данного направления распространения. }