Меню
Бесплатно
Главная  /  Базальная температура  /  Пушка гаусса почему я выбрал этот проект. Научно-исследовательская работа

Пушка гаусса почему я выбрал этот проект. Научно-исследовательская работа

П р о е к т

Пушка Гаусса.

Электромагнитный ускоритель масс (ЭМУМ)

Выполненный, учениками 9г класса

ГБОУ СОШ 717, САО, города Москвы

Полякова Марина

Литвиненко Руслан

Руководитель проекта, учитель физики:

Дмитриева Ольга Александровна

МОСКВА, 2012

ВВЕДЕНИЕ……………………………………………………..3

ГЛАВАI ПРИНЦИП ДЕЙСТВИЯ (ОБЩИЙ)…………………………5

НЕОХОДИМЫЕ ФОРМУЛЫ ДЛЯ РАСЧЕТА……………………..7

АЛГОРИТМ И ОПИСАНИЕ СБОРКИ МОДЕЛИ………………….8

СХЕМА ИСПОЛЬЗОВАНИЯ…………………………………………11

ПРИНЦИП СОЗДАННОЙ МОДЕЛИ……………………….…...…11

ГЛАВАII ПРИМЕНЕНИЕ ДАННОГО УСТРОЙСТВА……………....13

2.1 В КОСМОСЕ И МИРНЫХ ЦЕЛЯХ………………………………….14

2.2 В ВОЕННЫХ ЦЕЛЯХ………………………………………………….15

2.3 НАШЕ ПРЕДЛОЖЕНИЕ.……………………………………………..16

ЗАКЛЮЧЕНИЕ……………………………………………………………..18

ЛИТЕРАТУРА………………………………………………...…………….21

ПРИЛОЖЕНИЕ

ВВЕДЕНИЕ

Принцип устройства был разработан Карлом Гауссом, немецким физиком, астрономом и математиком.

Проект посвящен изобретению под названием Пушка Гаусса (Гаусс Ган или Коил Ган, как его называют на западный манер), по фамилии выдающегося немецкого математика, астронома и физика
XIX века, сформулировавшего основные принципы работы оружия, основанного на электромагнитном ускорении масс, гаусс гана.
Многие слышали о пушке Гаусса из фантастических книг или компьютерных игр, так как Пушка Гаусса весьма популярна в научной фантастике, где выступает в качестве персонального
высокоточного смертоносного оружия, а также стационарного высокоточного и высокоскорострельного оружия.

Среди игр пушка Гаусса появлялась в Fallout 2, Fallout Tactics, Half-life (есть экпериментальное оружие, именуемое Тау-пушкой), в StarCraft пехотинцы вооружены автоматической винтовкой Гаусса C-14 «Impaler». Также оружие похожее на пушку Гаусса появлялось в серии игр Quake, но в сознании многих эта пушка остается просто выдумкой фантастов, которая в лучшем случае имеет высокогабаритные прототипы в реальности.

Цель работы : изучить устройство электромагнитного ускорителя масс (пушки Гаусса), а также принципы его действия и применение. Собрать действующую модель Пушки Гаусса.

Основные задачи :

Рассмотреть устройство по чертежам и макетам.

Изучить устройство и принцип действия электромагнитного ускорителя масс.

Создать действующую модель.

Применение данной модели.

Практическая часть работы :

Создание функционирующей модели ускорителя масс в условиях школы. Компьютерная презентация проекта в формате Power Point .

Гипотеза : возможно ли создание простейшей функционирующей модели Пушки Гаусса в условиях школы?

Актуальность проекта : данный проект является междисциплинарным и охватывает большое количество материала.

Гаврилкин Тимофей Сергеевич

В настоящее время существует множество видов электромагнитных ускорителей масс. Наиболее известные – «Рельсотрон» и «Пушка Гаусса».

Пушка Гаусса в качестве оружия обладает преимуществами, которыми не обладают другие виды стрелкового оружия. Это отсутствие гильз и неограниченность в выборе начальной скорости и энергии боеприпаса, возможность бесшумного выстрела (если скорость достаточно обтекаемого снаряда не превышает скорости звука) в том числе без смены ствола и боеприпаса, относительно малая отдача (равная импульсу вылетевшего снаряда, нет дополнительного импульса от пороховых газов или движущихся частей), теоретически, больша́я надежность и износостойкость, а также возможность работы в любых условиях, в том числе космического пространства.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Электромагнитные ускорители масс. Пушка Гаусса Выполнил ученик 10 «М» класса МБОУ Лицей №185 Гаврилкин Тимофей Руководитель: Тимченко Ирина Александровна учитель физики МБОУ Лицей № 185

Цель работы: Научиться использовать электромагнитные силы; экспериментально показать их существование, собрав простейший ускоритель масс - пушку Гаусса.

Задачи: 1) Рассмотреть устройство по чертежам и макетам; 2) Изучить строение и принцип действия электромагнитного ускорителя масс; 3) Создать действующую модель

Актуальность работы Принцип электромагнитного ускорения масс можно использовать на практике в различных областях

Пример электромагнитного ускорителя масс

Карл Фридрих Гаусс (30.04.1777 – 23.02.1855)

Принцип работы пушки

Пример многоступенчатой пушки

Катушка индуктивности

Схема пушки Гаусса

Внешний вид модели

Эксперимент Ц ель: рассчитать приблизительную скорость вылета пуль разного типа. Оборудование: пушка Гаусса; 2 пули массами 1г и 3г, изготовленные из иглы и гвоздя; 2 тела – губка массой 3г и скотч массой 60г; линейка; цифровая видеокамера

Ход работы: Установить тело на расстоянии 3-5 см от конца ствола; Совместить отметку 0 на линейке с гранью тела; Выстрелить снарядом в тело; Зафиксировать выстрел и движение видеокамерой; Измерить расстояние, пройденное телом; Проделать опыт с каждым снарядом и телом; При помощи компьютера и видеокамеры определить время движения; Занести результаты в таблицу.

Таблица измерений и результатов выстрел масса пули кг масса тела кг время с расстояние м скорость общая м/с скорость пули м/с 1 0,001 губка 0,003 0,01 0,006 1,2 4,8 2 0,001 скотч 0,06 0,03 0,002 0,13 8,13 3 0,003 губка 0,003 0,04 0,22 11 22 4 0,003 скотч 0,06 0,07 0,04 1,14 24

КПД установки КПД= (А п / А з)*100 % КПД пушки составляет 5%

Спасибо за внимание!

Предварительный просмотр:

Департамент образования

мэрии города Новосибирска

муниципальное бюджетное общеобразовательное учреждение города Новосибирска «Лицей №185»

Октябрьский район

Электромагнитные ускорители масс. Пушка Гаусса.

Работу выполнил

Ученик 10 М класса

Гаврилкин Тимофей Сергеевич

Руководитель

Тимченко Ирина Александровна,

Учитель физики

Высшей квалификационной категории

Новосибирск, 2016

Введение

2.1. Теоретическая часть. Электромагнитный ускоритель масс.

2.2. Практическая часть. Создание функционирующей модели ускорителя масс в домашних условиях.

Заключение

Литература

Введение

В настоящее время существует множество видов электромагнитных ускорителей масс. Наиболее известные – «Рельсотрон» и «Пушка Гаусса».

Пушка Гаусса в качестве оружия обладает преимуществами, которыми не обладают другие виды стрелкового оружия. Это отсутствие гильз и неограниченность в выборе начальной скорости и энергии боеприпаса, возможность бесшумного выстрела (если скорость достаточно обтекаемого снаряда не превышает скорости звука) в том числе без смены ствола и боеприпаса, относительно малая отдача (равная импульсу вылетевшего снаряда, нет дополнительного импульса от пороховых газов или движущихся частей), теоретически, больша́я надежность и износостойкость, а также возможность работы в любых условиях, в том числе космического пространства.

Однако, несмотря на кажущуюся простоту пушки Гаусса и её преимущества, использование её в качестве оружия сопряжено с серьёзными трудностями.

Первая трудность - низкий КПД установки. Лишь 1-7 % заряда конденсаторов переходят в кинетическую энергию снаряда. Отчасти этот недостаток можно компенсировать использованием многоступенчатой системы разгона снаряда, но в любом случае КПД редко достигает 27%.

Вторая трудность - большой расход энергии (из-за низкого КПД) и достаточно длительное время накопительной перезарядки конденсаторов, что заставляет вместе с пушкой Гаусса носить и источник питания (как правило, мощную аккумуляторную батарею). Можно значительно увеличить эффективность, если использовать сверхпроводящие соленоиды, однако это потребует мощной системы охлаждения, что значительно уменьшит мобильность пушки Гаусса.

Для своей работы я выбрал пушку Гаусса, потому что простая схема сборки установки и доступность её элементов.

Цель моей работы: научиться использовать электромагнитные силы; экспериментально показать их существование, собрав простейший ускоритель масс - пушку Гаусса.

Задачи, которые я поставил перед собой:

1. Рассмотреть устройство пушки Гаусса по чертежам и макетам.

2. Изучить устройство и принцип действия электромагнитного ускорителя масс.

3. Создать действующую модель.

Актуальность работы заключается в том, что принцип электромагнитного ускорения масс можно использовать на практике, например, при создании строительных инструментов. Электромагнитное ускорение является перспективным направлением в развитии науки.

Сейчас такие ускорители существуют в основном как новейшие виды вооружения (хотя практически не применяются) и как установки, используемые учеными для практического испытания различных материалов, таких как прочные сплавы для изготовления космических аппаратов, элементов танковой брони и атомной энергетики.

Теоретическая часть

Пушка названа по имени немецкого ученого Карла Гаусса, заложившего основы математической теории электромагнетизма. Его именем названа система единиц – Гауссова система единиц. Однако сам Гаусс имеет малое отношение непосредственно к ускорителю.

Идеи подобных ускорителей масс были представлены Ю.В.Кондратюком для выведения с поверхности Земли различных космических контейнеров и аппаратов. В основном такие ускорители рассматривались как «Оружие будущего» или «Сверхмощные виды транспорта». Однако работающих прототипов еще не существует, либо их разработки держатся в особом секрете.

Строение пушки Гаусса.

1. Основные элементы:

  • Мощный и достаточно энергоемкий накопитель электрического потенциала, способный в кратчайшее время его разрядить (конденсатор).
  • Катушка (цилиндрическая обмотка), служащая непосредственно ускорителем.

2. Принцип действия.

В цилиндрической обмотке (соленоиде) при протекании через неё электрического тока возникает магнитное поле. Это магнитное поле начинает втягивать внутрь соленоида снаряд из ферромагнетика, который от этого начинает разгоняться. Если в момент, когда снаряд окажется в середине обмотки, ток в этой обмотке отключить, то втягивающее магнитное поле исчезнет и снаряд, набравший скорость, свободно вылетит через другой конец обмотки.

Чем сильнее магнитное поле и чем быстрее оно отключается – тем быстрее вылетает снаряд. Но одноступенчатые системы (т.е. состоящие из одной катушки) обладают достаточно низким КПД. Это объясняется рядом факторов:

  • Инерционность самого соленоида, самоиндукция которого вначале препятствует втягиванию снаряда, а затем после выключения тока, тормозит его движение.
  • Инерционностью снаряда, обладающего значительной массой.
  • Силой трения, которая вначале, при разгоне снаряда весьма велика.

Для достижения ощутимых результатов требуется делать обмотки соленоидов с чрезвычайно большой удельной мощностью, что весьма нежелательно, ибо приводит в лучшем случае к перегреву, а в худшем к их перегоранию.

Разработка и создание многоступенчатых систем поможет решить все эти проблемы. Благодаря постепенному, а не импульсному ускорению снаряда удельную мощность обмоток можно снизить и, следовательно, уменьшить их нагрев и продлить срок службы.

В многоступенчатых системах достигается более высокий КПД, что связано с постепенным снижением трения и с более высоким коэффициентом передачи энергии на последующих ступенях. Это означает, что чем больше начальная скорость снаряда, тем большее количество энергии он может взять от соленоида. Иными словами, если в первой ступени снаряду передается 1 – 3 % энергии магнитного поля, то в последней практически вся энергия поля переходит в кинетическую энергию ускоряемого снаряда.

КПД простейших многоступенчатых систем больше, чем одноступенчатых и может достигать 50 %. Но и это не предел! Многоступенчатые системы позволяют добиться более полного использования энергии импульсных источников тока, что даёт возможность в перспективе увеличить КПД системы до 90% и более.

Практическая часть

Для сборки пушки я изготовил самостоятельно катушку индуктивности с количеством витков 350 (5 слоев по 70 витков каждый). Использовал конденсатор емкостью 1000 мкФ, тиристор Т-122-25-10, и батарейку 3В. Для зарядки конденсатора дополнительно собрал цепь, питающуюся от сети, состоящую из лампы накаливания 60 Вт и выпрямительного диода.

Собрал модель по следующей схеме:

Технические характеристики пушки.

1. Снаряды: гвоздь 3г, игла 1г.

2. Катушка индуктивности: 350 витков, 7 слоев по 50 в каждом;

3. Ёмкость конденсатора: 1000 мкФ.

Внешний вид модели представлен на фотографиях:

Эксперимент

Оборудование и материалы:

Пушка Гаусса; 2 пули массами 1г и 3г, изготовленные из иглы и гвоздя;

2 тела – губка массой 3г и скотч массой 60г; линейка; цифровая видеокамера.

Ход работы:

1. Установить тело на расстоянии 3-5 см от конца ствола.

2. Совместить отметку 0 на линейке с гранью тела.

3. Выстрелить снарядом в тело.

4. Зафиксировать выстрел и движение видеокамерой.

5. Измерить расстояние, пройденное телом.

6. Проделать опыт с каждым снарядом и телом.

7. При помощи компьютера и видеокамеры определить время движения.

8. Занести результаты в таблицу.

9. Вычислить КПД установки.

Схема опыта:

Пушка Гаусса Пуля, m п Тело, m т

Вычисления:

1. Согласно формуле S=t(V+V об )/ 2 можно вычислить скорость тела.

Так как начальная скорость тела V =0, то данная формула преобразуется в формулу, имеющую вид V об =2S/t

2. По закону сохранения импульса: m п* v п + m т * v т =(m п + m т )v об

Отсюда V п =(v об * m об )/m п , где m об = m п + m т

Таблица измерений и результатов:

выстрела

масса пули

m п , кг

масса тела m т , кг

время t , с

расстояние

S , м

скорость общая

v об , м/с

скорость пули V п , м/с

0,001

губка

0,003

0,01

0,006

1,20

4,80

0,001

губка

0,003

0,01

0,008

1,60

6,40

0,001

скотч

0,060

0,02

0,001

0,10

6,10

0,001

скотч

0,060

0,02

0,002

0,13

8,13

0,003

губка

0,003

0,04

0,22

11,0

22,00

0,003

губка

0,003

0,04

0,22

11,0

22,00

0,003

скотч

0,060

0,07

0,04

1,14

24,00

0,003

скотч

0,060

0,06

0,05

1,17

24,57

Вывод: заметная разница в скоростях одного снаряда объясняется присутствием силы трения (скольжения для губки, и силы трения качения – для скотча), погрешностью в вычислениях, неточностью измерений и иными факторами сопротивления. Скорость пули зависит от её размера, массы и материала.

Расчёт КПД установки

КПД=(А п / А з ) * 100%

Полезная работа установки – разгон пули. Можно вычислить кинетическую энергию пули, приобретаемую в результате работы пушки по формуле: А п =Е к =(mv 2 )/2

В качестве затраченной работы можно использовать запасаемую конденсатором энергию, которая тратится на работу пушки:

А з = Е=(С * U 2 )/2

С – ёмкость конденсатора 1000 мКФ

U – напряжение 250 В

КПД= (0,003 * 22 2 )/(0,001 * 250 2 ) * 100%

КПД = 5%

Вывод: КПД ускорителя тем выше, чем лучше согласованы параметры соленоида с параметрами конденсатора и параметрами пули, т.е. при выстреле к моменту подлета пули к середине обмотки ток в катушке уже близко к нулю и магнитное поле отсутствует, не препятствуя снаряду вылетать из соленоида. Однако на практике получить такое удается редко – малейшее отклонение от теоретического идеала резко снижает КПД. Остальная энергия конденсатора теряется на активном сопротивлении проводов.

Заключение

Мой первый образец пушки Гаусса - простейший одноступенчатый ускоритель, служащий, скорее наглядной моделью для понимания принципа работы настоящего ускорителя.

В будущем планирую собрать более мощный многоступенчатый ускоритель, улучшив характеристики и добавив возможность заряжать его от аккумулятора. Так же более подробно изучить строение и принцип работы «Рельсотрона», после чего попытаться собрать и его.

Список литературы

1. Физика: учебник для 10 класса с углубленным изучением физики/ А. Т. Глазунов, О. Ф. Кабардин, А. Н. Малинин и др.; под ред. А. А. Пинского, О. Ф. Кабардина. – М.: Просвещение, 2009.

2. Физика: учебник для 11 класса с углубленным изучением физики/ А. Т. Глазунов, О. Ф. Кабардин, А. Н. Малинин и др.; под ред. А. А. Пинского, О. Ф. Кабардина. – М.: Просвещение, 2010.

3. С. А. Тихомирова, Б. М. Яворский. Физика. 10 класс : учебник для общеобразовательных учреждений (базовый и углубленный уровень). – М.: Мнемозина, 2010.

4. С. А. Тихомирова, Б. М. Яворский. Физика. 11 класс : учебник для общеобразовательных учреждений (базовый и углубленный уровень). – М.: Мнемозина, 2009.

5. Основные виды ЭМО. -электронный ресурс: http://www. gauss2k. narod. ru/index. Htm

6. Пушка Гаусса.- электронный ресурс: http://ru. wikipedia. org

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа с углубленным изучением отдельных предметов № 1
Тема: Создание экспериментальной установки «Пушка Гаусса»
Выполнил: Ворошилин Антон
Колтунов Василий
Руководитель: Буздалина И. Н.
Воронеж
2017 г.
Оглавление
Введение
1. Теоретическая часть
1.1 Принцип работы.
1.2 История создания.
2. Практическая часть
2.1 Параметры установки
2.2 Вычисление скорости
2.3 Характеристики катушки
Вывод

Введение
Актуальность работы
На протяжении всего периода своего существования человек стремился создавать все более совершенные инструменты. Первые из них помогали человеку более эффективно осуществлять хозяйственную деятельность, другие – осуществляли защиту результатов этой хозяйственной деятельности от посягательств соседей.
В этой работе мы рассмотрим возможность создания и практического применения электромагнитных ускорителей.
Копьё, лук, булава, но вот первые пушки, пистолеты, ружья. На протяжении всего периода человеческого развития развивалось и оружие. И вот уже на смену простейшим кремниевым ружьям пришли автоматические винтовки. Возможно, в будущем и они будут заменены новым видом оружия, например, электромагнитным. Чтобы жить в мире и избегать различных военных конфликтов, сильное государство должно защищать интересы своих граждан, а для этого в своём арсенале оно должно иметь мощное средство обороны, способное защитить от нападения из любой точки нашей планеты. С этой целью нужно двигаться вперед и развивать вооружение. За развитием технологий в военной технике, как известно, следует развитие технологий, используемых населением и в быту.
Одни из самых распространенных видов орудий – это пушки и ружья, использующие энергию, выделяемую при сжигании пороха. Но будущее за электромагнитным оружием, в котором тело приобретает кинетическую энергию за счет энергии электромагнитного поля. Преимуществ этого оружия достаточно.
Рассмотрим положительные стороны использования электромагнитного ускорителя в качестве оружия:
- отсутствие звука при выстреле,
- потенциально большая скорость,
- большая точность,
- большее поражающее действие,
Отрицательные стороны:
- низкий КПД на данный момент;
- большое потребление энергии, громоздкость.
Технологию создания электромагнитной пушки можно использовать для развития транспорта, в частности, для запуска спутников на орбиту. Более совершенные аккумуляторы могут дать толчок развитию экологически чистых способов получения электроэнергии (например, солнечной).
Можно предположить, что развитие этого перспективного вида оружия подтолкнёт человечество не столько к разрушению, сколько к созиданию.

Цель работы:
Создать рабочую модель полноразмерной пушки Гаусса и изучить ее свойства.
Задачи работы:
Изучить целесообразность использования данного вида оружия в реальных условиях.
Измерить КПД установки
Исследовать зависимость массы снаряда и его поражающих свойств.
Гипотеза: Создать рабочую модель пушки Гаусса - модели электромагнитного оружия возможно.

Теоретическая часть.
Принцип работы
Пушка Гаусса состоит из соленоида, внутри которого находится ствол из диэлектрика. В один из концов ствола вставляется снаряд, сделанный из ферромагнетика. При протекании электрического тока в соленоиде возникает магнитное поле (рис. 1), которое разгоняет снаряд, «втягивая» его внутрь соленоида. На концах снаряда при этом образуются полюса, ориентированные согласно полюсам катушки, из-за чего после прохода центра соленоида снаряд притягивается в обратном направлении, то есть тормозится. Для наибольшего эффекта импульс тока в соленоиде должен быть кратковременным и мощным. Как правило, для получения такого импульса используются электролитические конденсаторы с высоким рабочим напряжением.
Параметры ускоряющих катушек, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к соленоиду индукция магнитного поля в соленоиде была максимальна, но при дальнейшем приближении снаряда резко падала.

Рис. 1 - правило «правой руки»
История создания.
Электромагнитные пушки разделяют на следующие виды:
Рельсотрон – электромагнитный ускоритель масс, разгоняющий токопроводящий снаряд вдоль двух металлических направляющих с помощью силы Лоренца.
Пушка Гаусса названа по имени немецкого учёного Карла Гаусса, заложившего основы математической теории электромагнетизма. Следует иметь в виду, что этот метод ускорения масс используется в основном в любительских установках, так как не является достаточно эффективным для практической реализации.
Первый работающий образец электромагнитной пушки был разработан норвежским ученым Кристианом Биркелендом в 1904 году и представлял собой примитивное устройство, чьи характеристики были отнюдь не блестящи. В конце Второй Мировой немецкие ученые выдвинули идею о создании электромагнитной пушки для борьбы с самолетами противника. Ни одна из этих пушек так и не была построена. Как выяснили американские ученые, энергии, необходимой для работы каждой такой пушки, было бы достаточно для освещения половины Чикаго. В 1950 году австралийский физик Марк Олифан запустил создание пушки мощность 500 МДж, которая была готова в 1962 году и использовалась для научных экспериментов.
В середине 2000-х американские военные начали разработку боевого экземпляра электромагнитной пушки для своего флота. Они планируют оснастить большое количество кораблей таким типом орудий к 2020 году (рис. 2).
151765112395
рис. 2 - корабль USS Zumwalt, на который планируется установка электромагнитного вооружения

8255207645
(рис. 3 - Карл Гаусс)
Карл Гаусс (1777 - 1855) - немецкий ученый, чьи заслуги перед мировой наукой сложно переоценить. На протяжении своей жизни он был известен как механик, астроном, математик, геодезист, физик. Карл Гаусс заложил основы теории об электромагнитном взаимодействии. Действие рассматриваемого ускорителя масс основано на электромагнитном взаимодействии, поэтому он был назван в честь человека, заложившего основы понимания данного явления.

2.1 Параметры установки
Формулы для вычисления основных параметров установки
Кинетическая энергия снаряда
E=mv22m - масса снаряда
v- его скорость
Энергия, запасаемая в конденсаторе
E=CU22U- напряжение конденсатора
C - ёмкость конденсатора
Время разряда конденсаторов
Это время, за которое конденсатор полностью разряжается:
T=2πLCL - индуктивность
317533401000C - ёмкость
рис. 4 - схема установки
2.2 Вычисление скорости
Скорость полета снаряда вычислили опытным путем. На расстоянии 1 м от установки установили преграду, а затем произвели выстрел. В это время на диктофон записывался звук от момента выстрела до момента попадания снаряда в преграду. После чего загрузили аудиофайл в программу для редактирования звука и по данным диаграммы (рис. 5) вычислили время полета снаряда до цели. Считали, что звук распространяется мгновенно и без отражения в виду маленького расстояния от установки до преграды и маленького размера помещения, где производилось измерение.

Рис. 5 - изображение, полученное на компьютере
Рассчитаем параметры катушки, генерирующей магнитное поле. Система конденсатор-обмотка является колебательным контуром.
Найдем его период колебаний. Время первого полупериода колебаний равно времени, которое гвоздь летит от начала обмотки до её середины, а так как гвоздь изначально покоился, то примерно это время равно длине обмотки деленной на скорость полета снаряда.
Получили, что время полета снаряда t = 0,054 с
Вычислим скорость полета снаряда:
v= St= 18,5 м/сВычислим КПД установки:
η= mv2CU2∙100%=1,13 % . Полезная энергия равна 1,8 Дж.
КПД собранной установки является приемлемым для любительской установки.
2.3 Характеристики катушки
right4445
Кол-во витков: ~ 280
Радиус: 2R = 12; w = 8 мм
Длина обмотки: l - 41 мм
Рассчитаем индуктивность катушки:
L=μ0∙N2R22π(6R+9l+10w)μ0 - относительная магнитная проницаемость стального гвоздя, примерно равная 100.
L = 14.4 мкГн

Рис. 6 - готовая установка

Вывод
В ходе выполнения работы были успешно достигнуты все цели, поставленные нами изначально.
Мы убедились, что, обладая знаниями физики, полученными в школе, можно создать действующие электромагнитное оружие.
Была экспериментально установлена скорость полета снаряда при помощи метода, изобретенного самостоятельно.
Был измерен КПД экспериментальной установки. Он равняется 1,13%. Полученные данные позволяют сделать вывод о том, что в реальных условиях данный вид оружия не будет иметь успешного применения в виду низкого КПД. Эффективное практическое применение будет возможно лишь тогда, когда будут изобретены материалы, позволяющие рассеивать энергию эффективнее, чем медь.

Уже, наверное, лет 50 все говорят о том, что век пороха подошел к концу, и дальше огнестрельное уже не может развиваться. Несмотря на то, что с таким утверждением я абсолютно не согласен и считаю, что современному огнестрельному оружию, а точнее патронам, еще есть куда расти и совершенствоваться, не могу пройти мимо попыток замены пороха и вообще привычного принципа работы оружия. Понятно, что пока многое из придуманного просто невозможно, в основном по причине отсутствия компактного источника электрического тока или же из-за сложности производства и обслуживания, но при этом лежат на пыльной полке и ждут своего времени множество интереснейших проектов.

Пушка Гаусса


Начать именно с этого образца хочется по той причине, что он достаточно простой, ну и потому, что есть и собственный небольшой опыт в попытке создания такого оружия, и, надо сказать, не самой безуспешной.

Лично я узнал впервые об этом образце оружия вовсе не из игры "Сталкер", хотя именно благодаря ей об этом оружии знают миллионы, и даже не из игры Fallout, а из литературы, а именно из журнала ЮТ. Представленная в журнале пушка Гаусса было самой примитивной и позиционировалась как детская игрушка. Так, само "оружие" состояло из пластиковой трубки с намотанной на ней катушкой медной проволоки, которая играла роль электромагнита при подаче на нее электрического тока. В трубку вкладывался металлический шарик, который при подаче тока стремился притянуть к себе электромагнит. Чтобы шарик не "завис" в электромагните, подача тока была кратковременной, с электролитического конденсатора. Таким образом, до электромагнита шарик разгонялся, а дальше при отключении электромагнита летел уже самостоятельно. К этому всему предлагалась электронная мишень, но не будем скатываться к теме о том, какая раньше была интересная, полезная и главное востребованная литература.

Собственно, описанное выше устройство и есть простейшая пушка Гаусса, но естественно, что подобное устройство явно не может быть оружием, разве что при очень большом и мощном единственном электромагните. Для достижения приемлемых скоростей метаемого снаряда необходимо использовать, если так можно выразиться, ступенчатую систему разгона, то есть на стволе должно быть установлено несколько электромагнитов один за одним. Главной проблемой при создании такого аппарата в домашних условиях является синхронизация работы электромагнитов, так как от этого напрямую зависит скорость метаемого снаряда. Хотя прямые руки, паяльник и чердак или дача со старыми телевизорами, магнитофонами, грампроигрывателями и никакие трудности не страшны. На данный момент, пробежав глазами по сайтам, где люди демонстрируют свое творчество, я заметил, что практически все располагают катушки электромагнитов на самом стволе, грубо говоря, просто наматывают на него катушки. Судя по результатам испытаний таких образцов, далеко от нынешней общедоступной пневматике по эффективности такое оружие не ушло, но для развлекательной стрельбы вполне годное.

Собственно, больше всего меня мучает вопрос, почему катушки все стараются расположить на стволе, куда более эффективнее было бы использовать электромагниты с сердечниками, которые будут направлены этими самыми сердечниками к стволу. Таким образом, можно разместить, скажем, 6 электромагнитов на площади, которую занимал ранее один электромагнит, соответственно это даст больший прирост к скорости метаемого снаряда. Несколько секций таких электромагнитов по всей длине ствола смогут разогнать небольшой кусочек стали до приличных скоростей, правда весить установка будет немало даже без источника тока. Все почему-то стараются и высчитывают время разрядки конденсатора, питающего катушку, для того чтобы согласовать катушки между собой, чтобы они разгоняли снаряд, а не тормозили его. Согласен, сесть и посчитать занятие очень интересное, вообще физика и математика замечательные науки, но почему не согласовать катушки при помощи фото и светодиодов и простейшей схемки, вроде как дефицита особого нет и вполне за умеренную плату можно получить необходимые детали, хотя посчитать, конечно, дешевле. Ну, а источник питания электрическая сеть, трансформатор, диодный мост и несколько электролитических конденсаторов соединенных параллельно. Но даже при таком монстре весом килограмм под 20 без автономного источника электрического тока впечатляющих результатов навряд ли получиться добиться, хотя смотря у кого какая впечатлительность. И не не не, я ничего подобного не делал (опустив голову, водит ногой в тапочке по полу), я вот только ту игрушку из ЮТ мастерил с одной катушкой.

В общем, даже при использовании как какое-то стационарное оружие, скажем тот же пулемет для защиты объекта, не меняющего свое местоположение, такое оружие будет достаточно дорогим, а главное тяжелым и не самым эффективным, если конечно речь идет о разумных габаритах, а не о монстре с пятиметровым стволом. С другой же стороны, очень высокая теоретическая скорострельность и боеприпасы по цене копейка за полтонны ну очень уж привлекательно выглядят.

Таким образом, для пушки Гаусса основной проблемой является то, что электромагниты имеют большой вес, ну и как всегда требуется источник электрического тока. В целом, разработку именно оружия на основе пушки Гаусса никто не ведет, есть проект по запуску небольших спутников, но он скорее теоретический и уже давно не развивается. Интерес к пушке Гаусса поддерживается только благодаря кинематографу и компьютерным играм, да еще и энтузиастам, любящим работать головой и руками, которых в наше время, к сожалению, не так много. Для оружия есть более практичное устройство, которое потребляет электрический ток, хотя о практичности тут можно поспорить, но в отличии от пушки Гаусса тут есть определенные сдвиги.

RailGun или по-нашему Рельсотрон

Это оружие не менее известно, чем пушка Гаусса, за что нужно сказать спасибо компьютерным играм и кинематографу, правда если с принципом работы пушки Гаусса знакомы все кто заинтересовался этим видом оружия, то с рельсотроном не все понятною.Попробуем разобраться что это за зверь, как он работает и какие у него перспективы.

Началось все в далеком 1920 году, именно в этом году был получен патент на данный образец оружия, причем оружия изначально, никто не планировал использовать изобретение в мирных целях. Автором рельсотрона, или более известного рэилгана, является француз – Андрэ Луи-Октав Фошон Виепле. Несмотря на то, что конструктору удалось достигнуть некоторого успеха по поражению живой силы противника, его изобретением никто не заинтересовался, уж очень громоздкой была конструкция, а результат был так себе и вполне сопоставимый с огнестрельным оружием. Так почти двадцать лет изобретение было заброшено, до тех пор пока не нашлась страна, которая позволяла тратить себе огромные средства для развития науки, и особенно той части науки, которая могла убивать. Речь идет о фашисткой Германии. Именно там французским изобретением заинтересовался Иоахим Хэнслер. Под руководством ученого была создана значительно более эффективная установка, которая имела длину всего два метра, но разгоняла метаемый снаряд до скорости более 1200 метров в секунду, правда сам метаемый снаряд был выполнен из алюминиевого сплава и имел вес 10 грамм. Тем не менее, этого было более чем достаточно для ведения огня, как по живой силе противника, так и по небронированной технике. В частности свою разработку конструктор позиционировал как средство борьбы с воздушными целями. Более высокая скорость полета метаемого снаряда, в сравнении с огнестрельным оружием, делала работу конструктора весьма перспективной, так как вести огонь по движущимся, причем движущимся постоянно, целям было намного проще. Однако конструкция требовала доработки и конструктор проделал очень большой труд по совершенствованию данного образца, несколько изменив начальный принцип его работы.

В первом образце все было более или менее понятно и ничего фантастического не было. Имелось две рельсы, которые были «стволом» оружия. Между ними укладывался сам метаемый снаряд, который изготавливался из пропускающего электрический ток материала, в результате при подаче тока на рельсы, под воздействием силы Лоренца, метаемый снаряд стремился вперед и в идеальных условиях, которых, естественно, никогда не добиться, его скорость могла приближаться к скорости света. Так как существовало множество факторов, которые мешали разогнать сметаемый снаряд до таких скоростей, то конструктор решил от некоторых из них избавиться. Главным достижением стало то, что в последних наработках уже не метаемый снаряд замыкал цепь, делало это электрическая дуга позади метаемого снаряда, собственно это решение используется до сих пор, только совершенствуясь. Таким образом, конструктору удалось приблизиться к скорости полета метаемого снаряда равной 3 километрам в секунду, в это был 1944 год прошлого века. К счастью конструктору не хватило времени на то, чтобы завершить свою работу и решить те проблемы которые имело оружие, а их было не мало. Причем настолько не мало, что эту разработку спихнули американцам и работ в этом направлении в Советском Союзе не проводили. Только в семидесятых годах начали развивать у нас данное оружие и на данный момент мы, к сожалению, отстаем, ну по крайней мере по общедоступным данным. В США же уже давно достигли скорости в 7,5 километров в секунду и не собираются останавливаться. Работы на данный момент ведутся в направлении развития рельсотрона как средства противовоздушной обороны, так что как ручное огнестрельное оружие рельсотрон все еще фантастика или очень далекое будущее.

Главной проблемой рельсотрона является то, что для достижения максимальной эффективности нужно использовать рельсы с очень малым сопротивлением. На данный момент они покрыты серебром, что вроде бы не так накладно в финансовом плане, однако с учетом того, что «ствол» оружия длиной совсем не один и не два метра, это уже существенные затраты. Кроме того, после нескольких выстрелов рельсы нужно менять и восстанавливать, что деньги, да и скорострельность такого оружия остается очень низкой. Кроме того, не стоит забывать о том, что сами рельсы стараются оттолкнуться друг от друга под воздействием все тех же сил, которые разгоняют метаемый снаряд. По этой причине конструкция должна обладать достаточной прочностью, но в тоже время сами рельсы должны иметь возможность быстрой замены. Но не это главная проблема. Для выстрела требуется огромное количество энергии, так что одним автомобильным аккумулятором за спиной не отделаешься, тут уже нужны более мощные источники электрического тока, что ставит под вопрос мобильность такой системы. Так в США планируют устанавливать подобные установки на эсминцах, причем уже говорят об автоматизации подачи метаемых снарядов, охлаждении и прочих прелестях цивилизации. На данный момент заявленная дальность стрельбы по наземным целям составляет 180 километров, о воздушных пока молчат. Наши же конструкторы пока еще не определились с тем, где они будут применять свои наработки. Однако по обрывкам информации можно сделать вывод, что как самостоятельное оружие рельсотрон пока использоваться не будет, а вот как средство, которое дополняет уже существующее дальнобойное оружие, позволяя существенно добавить к скорости метаемого снаряда желаемые пару сотен метров в секунду, рельсотрон имеет хорошие перспективы, да и стоимость такой разработки будет куда ниже нежели какие-то мегапушки на собственных кораблях.

Остается только вопрос стоит ли считать нас в этом вопросе отставшими, так как обычно то, что работает плохо стараются пропиарить всеми возможными способами «шоб усе боялись», а вот то, что действительно эффективно, но его время еще не пришло, закрыто за семью замками. Ну, по крайней мере, в это хочется верить.

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«САМАРСКАЯ ГОСУДАРСТВЕННАЯ ОБЛАСТНАЯ АКАДЕМИЯ (НАЯНОВОЙ)»

Всероссийский конкурс исследовательских работ

«Познание-2015»

(Секция физика)

Научно-исследовательская работа

по теме: «« из ГОТОВЛЕНИЕ ПУШКИ ГАУССА В ДОМАШНИХ УСЛОВИЯ И ИССЛЕДОВАНИЕ ЕЕ ХАРАКТЕРИСТИК »

направлению: физика

Выполнил:

Ф. И.О. Егоршин Антон

Мурзин Артем

СГОАН, 9 «А2» класс

учебное заведение, класс

Научный руководитель:

Ф. И.О. Завершинская И. А .

к. п.н., преподаватель физики

зав. кафедры физики СГОАН

(уч. степень, должность)

Самара 2015

1. Введение…………………………………………………….......…3

2. Краткая биография…………………………………………..……5

3. Формулы, для расчета характеристик модели Пушки Гаусса...6

4. Практическая часть…………………………………….…..…….8

5. Определение КПД модели…………………………………..….10

6. Дополнительные исследования…………….…………….….…11

7. Заключение……………………………………………….……...13

8. Список литературы……………………………………………...14

Введение

В данной работе мы исследуем пушку Гаусса, которою многие могли видеть в некоторых компьютерных играх. Электромагнитная пушка Гаусса известна всем любителям компьютерных игр и фантастики. Назвали ее в честь немецкого физика Карла Гаусса, исследовавшего принципы электромагнетизма. Но так ли уж далеко смертельное фантастическое оружие от реальности?

Из курса школьной физики мы узнали, что электрический ток, проходя по проводникам, создает вокруг них магнитное поле. Чем больше ток, тем сильнее магнитное поле. Наибольший практический интерес представляет собой магнитное поле катушки с током, иначе говоря, катушки индуктивности (соленоид). Если катушку с током подвесить на тонких проводниках, то она установится в то же положение, в котором находится стрелка компаса. Значит, катушка индуктивности имеет два полюса - северный и южный.

Пушка Гаусса состоит из соленоида, внутри которого находится ствол из диэлектрика. В один из концов ствола вставляется снаряд, сделанный из ферромагнетика. При протекании электрического тока в соленоиде возникает магнитное поле, которое разгоняет снаряд, «втягивая» его внутрь соленоида. На концах снаряда при этом образуются полюса, симметричные полюсам катушки, из-за чего после прохода центра соленоида снаряд может притягиваться в обратном направлении и тормозиться.

Для наибольшего эффекта импульс тока в соленоиде должен быть кратковременным и мощным. Как правило, для получения такого импульса используются электрические конденсаторы. Параметры обмотки, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к соленоиду индуктивность магнитного поля в соленоиде была максимальна, но при дальнейшем приближении снаряда резко падала.

Пушка Гаусса в качестве оружия обладает преимуществами, которыми не обладают другие виды стрелкового оружия . Это отсутствие гильз, неограниченность в выборе начальной скорости и энергии боеприпаса , возможность бесшумного выстрела, в том числе без смены ствола и боеприпас. Относительно малая отдача (равная импульсу вылетевшего снаряда, нет дополнительного импульса от пороховых газов или движущихся частей). Теоретически, большая надежность и износостойкость, а также возможность работы в любых условиях, в том числе космического пространства. Также возможно применение пушек Гаусса для запуска легких спутников на орбиту.

Однако, несмотря на кажущуюся простоту, использование её в качестве оружия сопряжено с серьёзными трудностям:

Низкий КПД – около 10 %. Отчасти этот недостаток можно компенсировать использованием многоступенчатой системы разгона снаряда, но в любом случае КПД редко достигает 30%. Поэтому пушка Гаусса по силе выстрела проигрывает даже пневматическому оружию. Вторая трудность – большой расход энергии и достаточно длительное время накопительной перезарядки конденсаторов, что заставляет вместе с пушкой Гаусса носить и источник питания. Можно значительно увеличить эффективность, если использовать сверхпроводящие соленоиды, однако это потребует мощной системы охлаждения , что значительно уменьшит мобильность пушки Гаусса.

Высокое время перезаряда между выстрелами, то есть низкая скорострельность. Боязнь влаги, ведь намокнув, она поразит током самого стрелка.

Но главная проблема это мощные источники питания пушки, которые на данный момент являются громоздкими, что влияет на мобильность.

Таким образом, на сегодняшний день пушка Гаусса для орудий с малой поражающей способностью (автоматы, пулеметы и т. д.) не имеет особых перспектив в качестве оружия, так как значительно уступает другим видам стрелкового вооружения. Перспективы появляются при использовании ее как крупно-калиберного орудия военно-морского. Так например, в 2016 году ВМС США приступят к испытаниям на воде рельсотрона. Рельсотрон, или рельсовая пушка - орудие, в котором снаряд выбрасывается не с помощью взрывчатого вещества, а с помощью очень мощного импульса тока. Снаряд располагается между двумя параллельными электродами - рельсами. Снаряд приобретает ускорение за счёт силы Лоренца, которая возникает при замыкании цепи. С помощью рельсотрона можно разогнать снаряд до гораздо больших скоростей, чем с помощью порохового заряда.

Однако, принцип электромагнитного ускорения масс можно с успехом использовать на практике, например, при создании строительных инструментов - актуальное и современное направление прикладной физики . Электромагнитные устройства, преобразующие энергию поля в энергию движения тела, в силу разных причин ещё не нашли широкого применения на практике, поэтому имеет смысл говорить о новизне нашей работы.

Актуальность проекта : данный проект является междисциплинарным и охватывает большое количество материала.

Цель работы : изучить устройство электромагнитного ускорителя масс (пушки Гаусса), а также принципы его действия и применение. Собрать действующую модель Пушки Гаусса и определить ее КПД.

Основные задачи :

1. Рассмотреть устройство по чертежам и макетам.

2. Изучить устройство и принцип действия электромагнитного ускорителя масс.

3. Создать действующую модель.

4. Определить КПД модели

Практическая часть работы :

Создание функционирующей модели ускорителя масс в условиях дома.

Гипотеза : возможно ли создание простейшей функционирующей модели Пушки Гаусса в условиях дома?

Кратко о самом Гауссе.

(1777-1855) - немецкий математик, астроном, геодезист и физик.

Для творчества Гаусса характерна органическая связь между теоретической и прикладной математикой, широта проблематики. Труды Гаусса оказали большое влияние на развитие алгебры (доказательство основной теоремы алгебры), теории чисел (квадратичные вычеты), дифференциальной геометрии (внутренняя геометрия поверхностей), математической физики (принцип Гаусса), теории электричества и магнетизма, геодезии (разработка метода наименьших квадратов) и многих разделов астрономии .

Карл Гаусс родился 30 апреля 1777, Брауншвейг, ныне Германия. Скончался 23 февраля 1855, Геттинген, Ганноверское королевство, ныне Германия). Еще при жизни он был удостоен почетного титула «принц математиков». Он был единственным сыном бедных родителей. Школьные учителя были так поражены его математическими и лингвистическими способностями, что обратились к герцогу Брауншвейгскому с просьбой о поддержке, и герцог дал деньги на продолжение обучения в школе и в Геттингенском университете (в 1795-98). Степень доктора Гаусс получил в 1799 в университете Хельмштедта.

Открытия в области физики

В 1830-1840 годы Гаусс много внимания уделяет проблемам физики. В 1833 в тесном сотрудничестве с Вильгельмом Вебером Гаусс строит первый в Германии электромагнитный телеграф. В 1839 выходит сочинение Гаусса «Общая теория сил притяжения и отталкивания, действующих обратно пропорционально квадрату расстояния», в которой излагает. основные положения теории потенциала и доказывает знаменитую теорему Гаусса-Остроградского. Работа «Диоптрические исследования» (1840) Гаусса посвящена теории построения изображений в сложных оптических системах.

Формулы, связанные с принципом действия пушки.

Кинетическая энергия снаряда

https://pandia.ru/text/80/101/images/image003_56.gif" alt="~m" width="17"> - масса снаряда
- его скорость

Энергия, запасаемая в конденсаторе

https://pandia.ru/text/80/101/images/image006_39.gif" alt="~U" width="14" height="14 src="> - напряжение конденсатора

https://pandia.ru/text/80/101/images/image008_36.gif" alt="~T = {\pi\sqrt{LC} \over 2}" width="100" height="45 src=">

https://pandia.ru/text/80/101/images/image007_39.gif" alt="~C" width="14" height="14 src="> - ёмкость

Время работы катушки индуктивности

Это время за которое ЭДС катушки индуктивности возрастает до максимального значения (полный разряд конденсатора) и полностью падает до 0.

https://pandia.ru/text/80/101/images/image009_33.gif" alt="~L" width="13" height="14 src="> - индуктивность

https://pandia.ru/text/80/101/images/image011_23.gif" alt="индуктивность многослойной катушки, формула" width="201" height="68 src=">

Индуктивность рассчитаем с учетом наличия внутри катушки гвоздя. Поэтому относительную магнитную проницаемость возьмем примерно 100-500. Для изготовления пушки мы изготовили самостоятельно катушку индуктивности с количеством витков 350 (7 слоев по 50 витков, каждый), получили катушку индуктивностью 13,48 мкГн.

Сопротивление проводов рассчитаем по стандартной формуле .

Чем меньше сопротивление, тем лучше. На первый взгляд кажется, что провод большого диаметра лучше, однако это вызывает увеличение геометрических размеров катушки и уменьшение плотности магнитного поля в её середине, так что тут придется искать свою золотую середину.

Из анализа литературы мы пришли к выводу, что для пушки Гаусса, изготавливаемую в домашних условиях медный намоточный провод диаметром 0,8-1,2 мм является вполне приемлемым.

Мощность активных потерь находится по формуле [Вт] Где: I – ток в амперах, R – активное сопротивление проводов в омах.

В этой работе мы не предполагали измерение силы тока и расчет потерь, это вопросы будущей работы, где мы планируем определить ток и энергию катушки..jpg" width="552" height="449">.gif" width="12" height="23"> ; https://pandia.ru/text/80/101/images/image021_8.jpg" width="599 height=906" height="906">

ОПРЕДЕЛЕНИЕ КПД МОДЕЛИ.

Для определения КПД мы провели следующий опыт: стреляли снарядом известной массы в яблоко, известной массы. Яблоко было подвешено на нити длиной 1 м. мы определяли расстояние, на которое отклонится яблоко. По данному отклонению определяем высоту подъема, воспользовавшись теоремой Пифагора.

Результаты опытов по расчёту КПД

Таблица№1

Основные расчеты основаны на законах сохранения:

По закону сохранения энергии определим скорость снаряда, вместе с яблоком:

https://pandia.ru/text/80/101/images/image024_15.gif" width="65" height="27 src=">

https://pandia.ru/text/80/101/images/image026_16.gif" width="129" height="24">

https://pandia.ru/text/80/101/images/image029_14.gif" width="373" height="69 src=">

0 " style="border-collapse:collapse">

Из таблицы видно, что сила выстрела зависит от типа снаряда и от его массы, так как сверло весит столько же, сколько и 4 иглы вместе, но оно толще, цельнее, поэтому его кинетическая энергия больше.

Степени пробития снарядами разных тел:

Тип мишени: тетрадный лист.

Тут все понятно, лист пробивается идеально.

Тип мишени: тетрадь в 18 листов .

Сверло мы брать не стали, так как оно тупое, но отдача существенная.

В данном случае снарядам хватило энергии, чтобы пробить тетрадь, но не хватило ее, чтобы преодолеть силу трения и вылететь с другой стороны. Здесь многое зависит от пробивной способности снаряда, то есть формы, и от его шероховатости.

Заключение.

Целью нашей работы являлось изучение устройства электромагнитного ускорителя масс (пушки Гаусса), а также принципы его действия и применение. Собрать действующую модель Пушки Гаусса и определить ее КПД.

Цель мы достигли : изготовили экспериментальную действующую модель электромагнитного ускорителя масс (пушки Гаусса), упростив схемы, имеющиеся в интернете, и адаптировав модель к сети переменного тока стандартных характеристик.

Определили КПД полученной модели. КПД оказался равным примерно 1%. КПД имеет малое значение, что подтверждает все, что мы узнали из литературы.

Проведя исследование, мы сделали для себя следующие выводы:

1. Собрать работающий прототип электромагнитного ускорителя масс в домашних условиях вполне реально.

2. Использование электромагнитного ускорения масс имеет большие перспективы в будущем.

3. Электромагнитное оружие может стать станет достойной заменой крупнокалиберному огнестрельному орудию, Особенно это будет возможным при создании компактных источников энергии.

Список литературы:

1. Википедия http://ru. wikipedia. org

2. Основные виды ЭМО (2010) http://www. gauss2k. narod. ru/index. htm

3. Новое электромагнитное оружие 2010

http://vpk. name/news/40378_novoe_elektromagnitnoe_oruzhie_vyizyivaet_vseobshii_interes. html

4. Все о Пушке Гаусса
http://catarmorgauss. ucoz. ru/forum/6-38-1

5. www. popmech. ru

6. gauss2k. narod. ru

7. www. physics. ru

8. www. sfiz. ru

12. Физика: учебник для 10 класса с углубленным изучением физики/ , и др.; под ред. , . – М.: Просвещение, 2009.

13. Физика: учебник для 11 класса с углубленным изучением физики/ , и др.; под ред. , . – М.: Просвещение, 2010.