Меню
Бесплатно
Главная  /  Зачатие  /  Ядерное оружие. Виды ядерного оружия

Ядерное оружие. Виды ядерного оружия

На данный момент ядерное оружие по своей силе и мощи превосходит любое другое. Основано оно на принципе ядерной энергии, в отличие от другого оружия, где присутствует механическая и химическая энергия. Разрушительная способность такого оружия просто колоссальна! Эффект достигается за счет сильной взрывной волны, теплового воздействия и губительного радиационного поражения.

Принцип действия

Принцип ядерного оружия заключается в распаде урана, при котором выделяется очень большая энергия. Радиус поражения от ударной волны достигает нескольких километров. Волна распространяется длительное время и на далекое расстояние, что приводит к разрушениям вблизи ядерного взрыва. Окружающая местность может просто выгореть от нагрева поверхности. Большую опасность несет гамма-излучение и альфа-излучение, полученные при распаде радиоактивных веществ. Однако, со временем эта энергия быстро уменьшается. Уже через минуту после взрыва энергия спадает в тысячи раз. Но все равно человеку опасно контактировать с этим излучением и через длительное время. При взрыве образуется радиоактивное облако, которое может причинить огромный вред всему живому. От проникновения радиации у человека начинается лучевая болезнь, что может привести к скорой гибели. Все эти перечисленные факторы доказывают, что ядерное оружие на сегодняшний день является самым мощным и разрушительным в своем потенциале.

Первое использование ядерного оружия

Первые испытания ядерного оружия провели в США в 1945 году. Тогда все поняли, что будущее будет как раз за этим оружием, т.к. результаты показали настоящую силу ядерной энергии. При взрыве образовалось грибовидное облако, а земля под местом взрыва просто расплавилась, превратившись в радиоактивную зону. Спустя 16 лет на этом месте было зафиксирована радиация, превышающая норму.

В том же году 6 Августа была сброшена ядерная бомба на Японский город Хиросиму. Взрыв произошел на высоте 500 метров над землей, разрушив все в площади 10 кв. км. 140 тыс. человек тогда погибли. Вскоре подобная бомба была сброшена и на Нагасаки. Японии пришлось капитулировать перед США, а всем стало понятно, что при помощи ядерного оружия можно диктовать свою политику на международном уровне.

В последующие годы велась разработка водородной бомбы. Это позволяло гораздо увеличить поражающую мощность и сохранить приемлемые размеры снаряда. Долгие годы шла гонка вооружений. Каждая страна хотела заполучить в свою армию более сильное оружие, способное поражать как можно большую площадь. К счастью, ядерной войны не произошло, и дело ограничилось простой демонстрацией потенциальной мощи. В наши годы ажиотаж вокруг ядерной войны спал, производится разоружение арсеналов, но у многих стран по-прежнему сохраняются ядерные потенциалы, позволяющие быть на политической арене одними из первых.

Как известно, к ядерному оружию первого поколения , его нередко называют АТОМНЫМ, относят боевые заряды, основанные на использовании энергии деления ядер урана-235 или плутония-239. Первое в истории испытание такого зарядного устройства мощностью 15 кт было проведено в США 16 июля 1945 года на полигоне Аламогордо.

Взрыв в августе 1949 года первой советской атомной бомбы придал новый импульс в развертывании работ по созданию ядерного оружия второго поколения . В его основе лежит технология использования энергии термоядерных реакций синтеза ядер тяжелых изотопов водорода — дейтерия и трития. Такое оружие называют ТЕРМОЯДЕРНЫМ или водородным. Первое испытание термоядерного устройства «Майк» было проведено Соединенными Штатами 1 ноября 1952 года на острове Элугелаб (Маршалловы острова), мощность которого составила 5-8 миллионов тонн. В следующем году термоядерный заряд был взорван в СССР.

Осуществление атомных и термоядерных реакций открыло широкие возможности для их использования при создании серии различных боеприпасов последующих поколений. К ядерному оружию третьего поколения относят специальные заряды (боеприпасы), у которых за счет особой конструкции добиваются перераспределения энергии взрыва в пользу одного из поражающих факторов. Другие варианты зарядов такого оружия обеспечивают создание фокусировки того или иного поражающего фактора в определенном направлении, что также приводит к значительному усилению его поражающего действия.

Анализ истории создания и совершенствования ядерного оружия свидетельствует о том, что США неизменно лидировали в создании новых его образцов. Однако проходило некоторое время и СССР ликвидировал эти односторонние преимущества США. Не является исключением в этом отношении и ядерное оружие третьего поколения. Одним из наиболее известных образцов ядерного оружия третьего поколения является НЕЙТРОННОЕ оружие.

Что представляет собой нейтронное оружие?

О нейтронном оружии широко заговорили на рубеже 60-х годов. Однако впоследствии стало известно, что возможность его создания обсуждалась еще задолго до этого. Бывший президент Всемирной федерации научных работников профессор из Великобритании Э.Буроп вспоминал, что впервые он услышал об этом еще в 1944 году, когда в составе группы английских ученых работал в США над «Манхэттенским проектом». Работа над созданием нейтронного оружия была инициирована необходимостью получения мощного боевого средства, обладающего избирательной способностью поражения, для использования непосредственно на поле боя.

Первый взрыв нейтронного зарядного устройства (кодовый номер W-63) был произведен в подземной штольне Невады в апреле 1963 года . Полученный при испытании поток нейтронов оказался значительно ниже расчетной величины, что существенно снижало боевые возможности нового оружия. Потребовалось еще почти 15 лет для того, чтобы нейтронные заряды приобрели все качества боевого оружия. По мнению профессора Э.Буропа, принципиальное отличие устройства нейтронного заряда от термоядерного заключается в различной скорости выделения энергии: «В нейтронной бомбе выделение энергии происходит гораздо медленнее. Это нечто вроде пиропатрона замедленного действия «.

За счет этого замедления и уменьшается энергия, идущая на образование ударной волны и светового излучения и, соответственно, возрастает ее выделение в виде потока нейтронов. В ходе дальнейших работ были достигнуты определенные успехи в обеспечении фокусировки нейтронного излучения, что позволяло не только обеспечивать усиление его поражающего действия в определенном направлении, но и снизить опасность при его применении для своих войск.

В ноябре 1976 года в Неваде были проведены очередные испытания нейтронного боезаряда, в ходе которых были получены весьма впечатляющие результаты . В результате этого в конце 1976 года было принято решение о производстве компонентов нейтронных снарядов 203-мм калибра и боеголовок к ракете «Ланс». Позднее, в августе 1981 года на заседании Группы ядерного планирования Совета национальной безопасности США было принято решение о полномасштабном производстве нейтронного оружия: 2000 снарядов к 203-мм гаубице и 800 боеголовок к ракете «Ланс».

При взрыве нейтронной боеголовки основное поражение живым организмам наносится потоком быстрых нейтронов . По расчетам, на каждую килотонну мощности заряда выделяется около 10 нейтронов, которые с огромной скоростью распространяются в окружающем пространстве. Эти нейтроны обладают чрезвычайно высоким поражающим действием на живые организмы, гораздо сильнее, чем даже Y-излучение и ударная волна . Для сравнения укажем, что при взрыве обычного ядерного заряда мощностью 1 килотонна открыто расположенная живая сила будет уничтожена ударной волной на расстоянии 500-600 м. При взрыве нейтронной боеголовки той же мощности уничтожение живой силы будет происходить на расстоянии примерно в три раза большем.

Образующиеся при взрыве нейтроны движутся со скоростями несколько десятков километров в секунду. Врываясь словно снаряды в живые клетки организма, они выбивают ядра из атомов, рвут молекулярные связи, образуют свободные радикалы, обладающие высокой реакционной способностью, что приводит к нарушению основных циклов жизненных процессов.

При движении нейтронов в воздухе в результате столкновений с ядрами атомов газов они постепенно теряют энергию. Это приводит к тому, что на расстоянии около 2 км их поражающее действие практически прекращается . Для того чтобы снизить разрушительное действие сопутствующей ударной волны мощность нейтронного заряда выбирают в пределах от 1 до 10 кт, а высоту взрыва над землей — порядка 150-200 метров.

По свидетельству некоторых американских ученых, в Лос-Аламосской и Сандийской лабораториях США и во Всероссийском институте экспериментальной физики в Сарове (Арзамас-16) проводятся термоядерные эксперименты, в которых наряду с исследованиями по получению электрической энергии изучается возможность получения чисто термоядерной взрывчатки. Наиболее вероятным побочным результатом проводимых исследований, по их мнению, может стать улучшение энергомассовых характеристик ядерных боезарядов и создание нейтронной мини-бомбы. По оценкам экспертов, такой нейтронный боезаряд с тротиловым эквивалентом всего в одну тонну может создать смертельную дозу излучения на расстояниях 200-400 м .

Нейтронное оружие является мощным оборонительным средством и его наиболее эффективное применение возможно при отражении агрессии, особенно в том случае, когда противник вторгся на защищаемую территорию. Нейтронные боеприпасы являются тактическим оружием и их применение наиболее вероятно в так называемых «ограниченных» войнах, в первую очередь в Европе . Это оружие может приобрести особое значение для России, поскольку в условиях ослабления ее вооруженных сил и возрастания угрозы региональных конфликтов она будет вынуждена делать больший упор в обеспечении своей безопасности на ядерное оружие.

Применение нейтронного оружия может быть особенно эффективным при отражении массированной танковой атаки . Известно, что танковая броня на определенных расстояниях от эпицентра взрыва (более 300-400 м при взрыве ядерного заряда мощностью 1 кт) обеспечивает защиту экипажей от ударной волны и Y-излучения. В то же время быстрые нейтроны проникают через стальную броню без существенного ослабления.

Проведенные расчеты показывают, что при взрыве нейтронного заряда мощностью 1 килотонна экипажи танков будут мгновенно выведены из строя в радиусе 300 м от эпицентра и погибнут в течение двух суток. Экипажи, находящиеся на расстоянии 300-700 м, выйдут из строя через несколько минут и в течение 6-7 дней также погибнут; на расстояниях 700-1300 м они окажутся небоеспособными через несколько часов, а гибель большинства из них растянется в течение нескольких недель. На расстояниях 1300-1500 м определенная часть экипажей получит серьезные заболевания и постепенно выйдет из строя.

Нейтронные боезаряды могут быть также использованы в системах ПРО для борьбы с боеголовками атакующих ракет на траектории . По расчетам специалистов, быстрые нейтроны, обладая высокой проникающей способностью, пройдут через обшивку боеголовок противника, вызовут поражение их электронной аппаратуры. Кроме того, нейтроны, взаимодействуя с ядрами урана или плутония атомного детонатора боеголовки, вызовут их деление.

Такая реакция будет происходить с большим выделением энергии, что, в конечном счете, может привести к нагреванию и разрушению детонатора. Это, в свою очередь, приведет к выходу из строя всего заряда боеголовки. Это свойство нейтронного оружия было использовано в системах противоракетной обороны США. Еще в середине 70-х годов нейтронные боеголовки были установлены на ракетах-перехватчиках «Спринт» системы «Сейфгард», развернутой вокруг авиабазы «Гранд Форкс» (штат Северная Дакота). Не исключено, что в будущей системе национальной ПРО США будут также использованы нейтронные боезаряды.

Как известно, в соответствии с обязательствами, объявленными президентами США и России в сентябре-октябре 1991 г., все ядерные артснаряды и боеголовки тактических ракет наземного базирования должны быть ликвидированы . Однако не вызывает сомнений, что в случае изменения военно-политической ситуации и принятия политического решения отработанная технология нейтронных боезарядов позволяет наладить их массовое производство в короткое время.

«Супер-ЭМИ»

Вскоре после окончания Второй мировой войны, в условиях монополии на ядерное оружие, Соединенные Штаты возобновили испытания с целью его совершенствования и определения поражающих факторов ядерного взрыва. В конце июня 1946 года в районе атолла Бикини (Маршалловы острова) под шифром «Операция Кроссроудс» были проведены ядерные взрывы, в ходе которых исследовалось поражающее действие атомного оружия.

В ходе этих испытательных взрывов было обнаружено новое физическое явление образование мощного импульса электромагнитного излучения (ЭМИ) , к которому сразу же был проявлен большой интерес. Особенно значительным оказался ЭМИ при высоких взрывах. Летом 1958 года были произведены ядерные взрывы на больших высотах. Первую серию под шифром «Хардтэк» провели над Тихим океаном вблизи острова Джонстон. В ходе испытаний были взорваны два заряда мегатонного класса: «Тэк» — на высоте 77 километров и «Ориндж» — на высоте 43 километра.

В 1962 году были продолжены высотные взрывы: на высоте 450 км под шифром «Старфиш» был произведен взрыв боеголовки мощностью 1,4 мегатонны. Советский Союз также в течение 1961-1962 гг. провел серию испытаний, в ходе которых исследовалось воздействие высотных взрывов (180-300 км) на функционирование аппаратуры систем ПРО.
При проведении этих испытаний были зафиксированы мощные электромагнитные импульсы, которые обладали большим поражающим действием на электронную аппаратуру, линии связи и электроснабжения, радио- и радиолокационные станции на больших расстояниях. С тех пор военные специалисты продолжали уделять большое внимание исследованию природы этого явления, его поражающего действия, способов защиты от него своих боевых и обеспечивающих систем.

Физическая природа ЭМИ определяется взаимодействием Y-квантов мгновенного излучения ядерного взрыва с атомами газов воздуха : Y-кванты выбивают из атомов электроны (так называемые комптоновские электроны), которые движутся с огромной скоростью в направлении от центра взрыва. Поток этих электронов, взаимодействуя с магнитным полем Земли, создает импульс электромагнитного излучения. При взрыве заряда мегатонного класса на высотах несколько десятков километров напряженность электрического поля на поверхности земли может достигать десятков киловольт на метр .

На основе полученных в ходе испытаний результатов военные специалисты США развернули в начале 80-х годов исследования, направленные на создание еще одного вида ядерного оружия третьего поколения — Супер-ЭМИ с усиленным выходом электромагнитного излучения.

Для увеличения выхода Y-квантов предполагалось создать вокруг заряда оболочку из вещества, ядра которого, активно взаимодействуя с нейтронами ядерного взрыва, испускают Y-излучение высоких энергий. Специалисты считают, что с помощью Супер-ЭМИ возможно создать напряженность поля у поверхности Земли порядка сотен и даже тысяч киловольт на метр .

По расчетам американских теоретиков, взрыв такого заряда мощностью 10 мегатонн на высоте 300-400 км над географическим центром США — штатом Небраска приведет к нарушению работы радиоэлектронных средств почти на всей территории страны в течение времени, достаточном для срыва ответного ракетно-ядерного удара.

Дальнейшее направление работ по созданию Супер-ЭМИ было связано с усилением его поражающего действия за счет фокусировки Y-излучения, что должно было привести к увеличению амплитуды импульса. Эти свойства Супер-ЭМИ делают его оружием первого удара, предназначенном для выведения из строя системы государственного и военного управления, МБР, особенно мобильного базирования, ракет на траектории, радиолокационных станций, космических аппаратов, систем энергоснабжения и т.п. Таким образом, Супер-ЭМИ имеет явно наступательный характер и является дестабилизирующим оружием первого удара .

Проникающие боеголовки — пенетраторы

Поиски надежных средств уничтожения высокозащищенных целей привели военных специалистов США к идее использования для этого энергии подземных ядерных взрывов. При заглублении ядерных зарядов в грунт значительно возрастает доля энергии, идущей на образование воронки, зоны разрушения и сейсмических ударных волн. В этом случае при существующей точности МБР и БРПЛ значительно повышается надежность уничтожения «точечных», особо прочных целей на территории противника.

Работа над созданием пенетраторов была начата по заказу Пентагона еще в середине 70-х годов, когда концепции «контрсилового» удара придавалось приоритетное значение. Первый образец проникающей боеголовки был разработан в начале 80-х годов для ракеты средней дальности «Першинг-2» . После подписания Договора по ракетам средней и меньшей дальности (РСМД) усилия специалистов США были перенацелены на создание таких боеприпасов для МБР.

Разработчики новой боеголовки встретились со значительными трудностями, связанными, прежде всего, с необходимостью обеспечить ее целостность и работоспособность при движении в грунте. Огромные перегрузки, действующие на боезаряд (5000-8000 g, g-ускорение силы тяжести) предъявляют чрезвычайно жесткие требования к конструкции боеприпаса.

Поражающее действие такой боеголовки на заглубленные, особо прочные цели определяется двумя факторами — мощностью ядерного заряда и величиной его заглубления в грунт . При этом для каждого значения мощности заряда существует оптимальная величина заглубления, при которой обеспечивается наибольшая эффективность действия пенетратора.

Так, например, разрушающее действие на особо прочные цели ядерного заряда мощностью 200 килотонн будет достаточно эффективным при его заглублении на глубину 15-20 метров и оно будет эквивалентным воздействию наземного взрыва боеголовки ракеты МХ мощностью 600 кт. Военные специалисты определили, что при точности доставки боеголовки-пенетратора, характерной для ракет МХ и «Трайдент-2», вероятность уничтожения ракетной шахты или командного пункта противника одним боезарядом, весьма высока. Это означает, что в этом случае вероятность разрушения целей будет определяться лишь технической надежностью доставки боеголовок.

Очевидно, что проникающие боеголовки предназначены для уничтожения центров государственного и военного управления противника, МБР, находящихся в шахтах, командных пунктов и т.п. Следовательно, пенетраторы являются наступательным, «контрсиловым» оружием, предназначенным для нанесения первого удара и в силу этого имеют дестабилизирующий характер .

Значение проникающих боеголовок, в случае принятия их на вооружение, может значительно возрасти в условиях сокращения стратегических наступательных вооружений, когда снижение боевых возможностей по нанесению первого удара (уменьшение количества носителей и боеголовок) потребует повышения вероятности поражения целей каждым боеприпасом. В то же время для таких боеголовок необходимо обеспечивать достаточно высокую точность попадания в цель. Поэтому рассматривалась возможность создания боеголовок-пенетраторов, оснащенных системой самонаведения на конечном участке траектории, подобно высокоточному оружию.

Рентгеновский лазер с ядерной накачкой

Во второй половине 70-х годов в Ливерморской радиационной лаборатории были начаты исследования по созданию «противоракетного оружия XXI века» — рентгеновского лазера с ядерным возбуждением . Это оружие с самого начала замышлялось в качестве основного средства уничтожения советских ракет на активном участке траектории, до разделения боеголовок. Новому оружию присвоили наименование — «оружие залпового огня».

В схематическом виде новое оружие можно представить в виде боеголовки, на поверхности которой укрепляется до 50 лазерных стержней. Каждый стержень имеет две степени свободы и подобно орудийному стволу может быть автономно направлен в любую точку пространства. Вдоль оси каждого стержня, длиной несколько метров, размещается тонкая проволока из плотного активного материала, «такого как золото». Внутри боеголовки размещается мощный ядерный заряд, взрыв которого должен выполнять роль источника энергии для накачки лазеров.

По оценкам некоторых специалистов, для обеспечения поражения атакующих ракет на дальности более 1000 км потребуется заряд мощностью несколько сотен килотонн . Внутри боеголовки также размещается система прицеливания с быстродействующим компьютером, работающим в реальном масштабе времени.

Для борьбы с советскими ракетами военными специалистами США была разработана особая тактика его боевого использования. С этой целью ядерно-лазерные боеголовки предлагалось разместить на баллистических ракетах подводных лодок (БРПЛ). В «кризисной ситуации» или в период подготовки к нанесению первого удара подлодки, оснащенные этими БРПЛ, должны скрытно выдвинуться в районы патрулирования и занять боевые позиции как можно ближе к позиционным районам советских МБР: в северной части Индийского океана, в Аравийском, Норвежском, Охотском морях.

При поступлении сигнала о старте советских ракет производится пуск ракет подводных лодок. Если советские ракеты поднялись на высоту 200 км, то для того, чтобы выйти на дальность прямой видимости, ракетам с лазерными боеголовками необходимо подняться на высоту около 950 км. После этого система управления совместно с компьютером производит наведение лазерных стержней на советские ракеты. Как только каждый стержень займет положение, при котором излучение будет попадать точно в цель, компьютер подаст команду на подрыв ядерного заряда.

Огромная энергия, выделяющаяся при взрыве в виде излучений, мгновенно переведёт активное вещество стержней (проволоку) в плазменное состояние . Через мгновение эта плазма, охлаждаясь, создаст излучение в рентгеновском диапазоне, распространяющееся в безвоздушном пространстве на тысячи километров в направлении оси стержня. Сама лазерная боеголовка через несколько микросекунд будет разрушена, но до этого она успеет послать мощные импульсы излучения в сторону целей.

Поглощаясь в тонком поверхностном слое материала ракеты, рентгеновское излучение может создать в нем чрезвычайно высокую концентрацию тепловой энергии, что вызовет его взрывообразное испарение, приводящее к образованию ударной волны и, в конечном счете, к разрушению корпуса.

Однако создание рентгеновского лазера, который считался краеугольным камнем рейгановской программы СОИ, встретилось с большими трудностями, которые пока не удалось преодолеть . Среди них на первых местах стоят сложности фокусировки лазерного излучения, а также создание эффективной системы наведения лазерных стержней.

Первые подземные испытания рентгеновского лазера были проведены в штольнях Невады в ноябре 1980 года под кодовым названием «Дофин». Полученные результаты подтвердили теоретические выкладки ученых, однако, выход рентгеновского излучения оказался весьма слабым и явно недостаточным для уничтожения ракет. После этого последовала серия испытательных взрывов «Экскалибур», «Супер-Экскалибур», «Коттедж», «Романо», в ходе которых специалисты преследовали главную цель — повысить интенсивность рентгеновского излучения за счет фокусировки.

В конце декабря 1985 года был произведен подземный взрыв «Голдстоун» мощностью около 150 кт, а в апреле следующего года — испытание «Майти Оук» с аналогичными целями. В условиях запрета на ядерные испытания на пути создания этого оружия возникли серьезные препятствия.

Необходимо подчеркнуть, что рентгеновский лазер является, прежде всего, ядерным оружием и, если его взорвать вблизи поверхности Земли, то он будет обладать примерно таким же поражающим действием, что и обычный термоядерный заряд такой же мощности.

«Гиперзвуковая шрапнель»

В ходе работ по программе СОИ, теоретические расчеты и результаты моделирования процесса перехвата боеголовок противника показали, что первый эшелон ПРО, предназначенный для уничтожения ракет на активном участке траектории, полностью решить эту задачу не сможет. Поэтому необходимо создать боевые средства, способные эффективно уничтожать боеголовки в фазе их свободного полета.

С этой целью специалисты США предложили использовать мелкие металлические частицы, разогнанные до высоких скоростей с помощью энергии ядерного взрыва . Основная идея такого оружия состоит в том, что при высоких скоростях даже маленькая плотная частица (массой не более грамма) будет обладать большой кинетической энергией. Поэтому при соударении с целью частица может повредить или даже пробить оболочку боеголовки. Даже в том случае, если оболочка будет только повреждена, то при входе в плотные слои атмосферы она будет разрушена в результате интенсивного механического воздействия и аэродинамического нагрева.

Естественно, при попадании такой частицы в тонкостенную надувную ложную цель, ее оболочка будет пробита и она в вакууме сразу же потеряет свою форму. Уничтожение легких ложных целей значительно облегчит селекцию ядерных боеголовок и, тем самым, будет способствовать успешной борьбе с ними.

Предполагается, что конструктивно такая боеголовка будет содержать ядерный заряд сравнительно небольшой мощности с автоматической системой подрыва, вокруг которого создается оболочка, состоящая из множества мелких металлических поражающих элементов. При массе оболочки 100 кг можно получить более 100 тысяч осколочных элементов , что позволит создать сравнительно большое и плотное поле поражения. В ходе взрыва ядерного заряда образуется раскаленный газ — плазма, который, разлетаясь с огромной скоростью, увлекает за собой и разгоняет эти плотные частицы. Сложной технической задачей при этом является сохранение достаточной массы осколков, поскольку при их обтекании высокоскоростным потоком газа будет происходить унос массы с поверхности элементов.

В США была проведена серия испытаний по созданию «ядерной шрапнели» по программе «Прометей». Мощность ядерного заряда в ходе этих испытаний составляла всего несколько десятков тонн. Оценивая поражающие возможности этого оружия, следует иметь в виду, что в плотных слоях атмосферы частицы, движущиеся со скоростями более 4-5 километров в секунду, будут сгорать. Поэтому «ядерную шрапнель» можно применять только в космосе, на высотах более 80-100 км, в условиях безвоздушного пространства .

Соответственно этому, шрапнельные боеголовки могут с успехом применяться, помимо борьбы с боеголовками и ложными целями, также в качестве противокосмического оружия для уничтожения спутников военного назначения, в частности, входящих в систему предупреждения о ракетном нападении (СПРН). Поэтому возможно его боевое использование в первом ударе для «ослепления» противника.

Рассмотренные выше различные виды ядерного оружия отнюдь не исчерпывают всех возможностей в создании его модификаций. Это, в частности, касается проектов ядерного оружия с усиленным действием воздушной ядерной волны, повышенным выходом Y-излучения, усилением радиоактивного заражения местности (типа пресловутой «кобальтовой» бомбы) и др.

В последнее время в США рассматриваются проекты ядерных зарядов сверхмалой мощности :
— мини-ньюкс (мощность сотни тонн),
— микро-ньюкс (десятки тонн),
— тайни-ньюкс (единицы тонн), которые кроме малой мощности, должны быть значительно более «чистыми», чем их предшественники.

Процесс совершенствования ядерного оружия продолжается и нельзя исключить появления в будущем сверхминиатюрных ядерных зарядов, созданных на основе использования сверхтяжелых трансплутониевых элементов с критической массой от 25 до 500 граммов. У трансплутониевого элемента курчатовия величина критической массы составляет около 150 граммов.

Ядерное устройство при использовании одного из изотопов калифорния будет иметь настолько малые размеры, что, обладая мощностью в несколько тонн тротила, может быть приспособлено для стрельбы из гранатометов и стрелкового оружия.

Все вышесказанное свидетельствует о том, что использование ядерной энергии в военных целях обладает значительными потенциальными возможностями и продолжение разработок в направлении создания новых образцов оружия может привести к «технологическому прорыву», который снизит «ядерный порог», окажет отрицательное влияние на стратегическую стабильность.

Запрещение всех ядерных испытаний если и не перекрывает полностью пути развития и совершенствования ядерного оружия, то значительно тормозит их. В этих условиях особое значение приобретает взаимная открытость, доверительность, ликвидация острых противоречий между государствами и создание, в конечном счете, эффективной международной системы коллективной безопасности.

/Владимир Белоус, генерал-майор, профессор Академии военных наук, nasledie.ru /

Великобритания Румыния Германия Саудовская Аравия Египет Сирия Израиль США Индия Норвегия Ирак Украина Иран Франция Канада Казахстан Швеция Китай ЮАР КНДР Япония Польша

При подрыве ядерного боеприпаса происходит ядерный взрыв , поражающими факторами которого являются:

Люди, непосредственно подвергшиеся воздействию поражающих факторов ядерного взрыва, кроме физических повреждений, испытывают мощное психологическое воздействие от ужасающего вида картины взрыва и разрушений. Электромагнитный импульс непосредственного влияния на живые организмы не оказывает, но может нарушить работу электронной аппаратуры.

Классификация ядерных боеприпасов

Все ядерные боеприпасы могут быть разделены на две основные категории:

  • «Атомные» - однофазные или одноступенчатые взрывные устройства, в которых основной выход энергии происходит от ядерной реакции деления тяжелых ядер (урана-235 или плутония) с образованием более лёгких элементов.
  • Термоядерное оружие (также «водородные») - двухфазные или двухступенчатые взрывные устройства, в которых последовательно развиваются два физических процесса, локализованных в различных областях пространства: на первой стадии основным источником энергии является реакция деления тяжелых ядер, а на второй реакции деления и термоядерного синтеза используются в различных пропорциях, в зависимости от типа и настройки боеприпаса.

Реакция термоядерного синтеза, как правило, развивается внутри делящейся сборки и служит мощным источником дополнительных нейтронов. Только ранние ядерные устройства в 40-х годах XX в., немногочисленные бомбы пушечной сборки в 1950-х, некоторые ядерные артиллерийские снаряды, а также изделия ядерно-технологически слаборазвитых государств (ЮАР, Пакистан, КНДР) не используют термоядерный синтез в качестве усилителя мощности ядерного взрыва. Вопреки устойчивому стереотипу, в термоядерных (то есть двухфазных) боеприпасах бо́льшая часть энергии (до 85%) выделяется за счет деления ядер урана-235/плутония-239 и/или урана-238. Вторая ступень любого такого устройства может быть оснащена тампером из урана-238, который эффективно делится от быстрых нейтронов реакции синтеза. Так достигается многократное увеличение мощности взрыва и чудовищный рост количества радиоактивных осадков. С легкой руки Р. Юнга, автора знаменитой книги Ярче тысячи солнц, написанной в 1958 году по «горячим следам» Манхэттенского проекта , такого рода «грязные» боеприпасы принято называть FFF (fusion-fission-fusion) или трехфазными. Однако этот термин не является вполне корректным. Почти все «FFF» относится к двухфазным и отличаются только материалом тампера, который в «чистом» боеприпасе может быть выполнен из свинца, вольфрама и т. д. Исключением являются устройства типа «Слойки» Сахарова , которые следует отнести к однофазным, хотя они имеют слоистую структуру взрывчатого вещества (ядро из плутония - слой дейтерида лития-6 - слой урана 238). В США такое устройство получило название Alarm Clock (Часы с будильником). Схема последовательного чередования реакций деления и синтеза реализована в двухфазных боеприпасах, в которых можно насчитать до 6 слоев при весьма «умеренной» мощности. Примером служит относительно современная боеголовка W88, в которой первая секция (primary) содержит два слоя, вторая секция (secondary) имеет три слоя, и ещё одним слоем является общая для двух секций оболочка из урана-238 (см. рисунок).

  • Иногда в отдельную категорию выделяется нейтронное оружие - двухфазный боеприпас малой мощности (от 1 кт до 25 кт), в котором 50-75% энергии получается за счет термоядерного синтеза. Поскольку основным переносчиком энергии при синтезе являются быстрые нейтроны, то при взрыве такого боеприпаса выход нейтронов может в несколько раз превышать выход нейтронов при взрывах однофазных ядерных взрывных устройств сравнимой мощности. За счет этого достигается существенно больший вес поражающих факторов нейтронное излучение и наведённая радиоактивность (до 30% от общего энерговыхода), что может быть важным с точки зрения задачи уменьшения радиоактивных осадков и снижения разрушений на местности при высокой эффективности применения против танков и живой силы. Следует отметить мифический характер представлений о том, что нейтронное оружие поражает исключительно людей и оставляет в сохранности строения. По разрушительному воздействию взрыв нейтронного боеприпаса в сотни раз превосходит любой неядерный боеприпас.

Пушечная схема

«Пушечная схема» использовалась в некоторых моделях ядерного оружия первого поколения. Суть пушечной схемы заключается в выстреливании зарядом пороха одного блока делящегося вещества докритической массы («пуля») в другой - неподвижный («мишень»). Блоки рассчитаны так, что при соединении их общая масса становится сверхкритической.

Данный способ детонации возможен только в урановых боеприпасах, так как плутоний имеет на два порядка более высокий нейтронный фон, что резко повышает вероятность преждевременного развития цепной реакции до соединения блоков. Это приводит к неполному выходу энергии (fizzle или «пшик»). Для реализации пушечной схемы в плутониевых боеприпасах требуется увеличение скорости соединения частей заряда до технически недостижимого уровня. Кроме того, уран лучше, чем плутоний, выдерживает механические перегрузки.

Классическим примером такой схемы является бомба «Малыш » («Little Boy»), сброшенная на Хиросиму 6 августа г. Уран для её производства был добыт в Бельгийском Конго (ныне Демократическая Республика Конго), в Канаде (Большое Медвежье озеро) и в США (штат Колорадо). В бомбе «Little Boy» для этой цели использовался укороченный до 1,8 м ствол морского орудия калибра 16,4 см, при этом урановая «мишень» представляла собой цилиндр диаметром 100 мм, на который при «выстреле» надвигалась цилиндрическая «пуля» сверхкритической массы (38,5 кг) с соответствующим внутренним каналом. Такой «интуитивно непонятный» дизайн был сделан для снижения нейтронного фона мишени: в нём она находилась не вплотную, а на расстоянии 59 мм от нейтронного отражателя («тампера»). В результате риск преждевременного начала цепной реакции деления с неполным энерговыделением снижался до нескольких процентов.

Имплозивная схема

Эта схема детонации подразумевает получение сверхкритического состояния путём обжатия делящегося материала сфокусированной ударной волной, создаваемой взрывом химической взрывчатки. Для фокусировки ударной волны используются так называемые взрывные линзы, и подрыв производится одновременно во многих точках с прецизионной точностью. Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее трудных задач. Формирование сходящейся ударной волны обеспечивалось использованием взрывных линз из «быстрой» и «медленной» взрывчаток - ТАТВ (Триаминотринитробензол) и баратола (смесь тринитротолуола с нитратом бария), и некоторыми добавками) (см. анимацию).

По такой схеме был исполнен и первый ядерный заряд (ядерное устройство «Gadget» (англ. gadget - приспособление), взорванный на башне в испытательных целях в ходе испытаний с выразительным названием «Trinity» («Троица») 16 июля 1945 года на полигоне неподалеку от местечка Аламогордо в штате Нью-Мексико), и вторая из примененных по назначению атомных бомб - «Толстяк » («Fat Man»), сброшенная на Нагасаки. Фактически, «Gadget» был лишенным внешней оболочки прототипом бомбы «Толстяк». В этой первой атомной бомбе в качестве нейтронного инициатора был использован так называемый «ёжик» (англ. urchin ). (Технические подробности см. в статье «Толстяк ».) Впоследствии эта схема была признана малоэффективной, и неуправляемый тип нейтронного инициирования почти не применялся в дальнейшем.

В ядерных зарядах на основе реакции деления в центре полой сборки обычно размещается небольшое количество термоядерного топлива (дейтерий и тритий), которое нагревается и сжимается в процессе деления сборки до такого состояния, что в нём начинается термоядерная реакция синтеза. Эту газовую смесь необходимо непрерывно обновлять, чтобы скомпенсировать непрерывно идущий самопроизвольный распад ядер трития. Выделяющиеся при этом дополнительные нейтроны инициируют новые цепные реакции в сборке и возмещают убыль нейтронов, покидающих активную зону, что приводит к многократному росту энергетического выхода от взрыва и более эффективному использованию делящегося вещества. Варьируя содержание газовой смеси в заряде получают боеприпасы с регулируемой в широких пределах мощностью взрыва.

Следует отметить, что описанная схема сферической имплозии является архаичной и с середины 1950-х годов почти не применяется. Реально применяемый дизайн Swan (англ. swan - лебедь), основан на использовании эллипсоидальной делящейся сборки, которая в процессе двухточечной, то есть инициированной в двух точках имплозии сжимается в продольном направлении и превращается в надкритическую сферу. Как таковые, взрывные линзы при этом не используются. Детали этого дизайна до сих пор засекречены, но, предположительно, формирование сходящейся ударной волны осуществляется за счет эллипсоидальной формы имплозирующего заряда, так что между ним и находящейся внутри ядерной сборкой остается заполненное воздухом пространство. Тогда равномерное обжатие сборки осуществляется за счет того, что скорость детонации взрывчатки превышает скорость движения ударной волны в воздухе. Существенно более легкий тампер выполняется не из урана-238, а из хорошо отражающего нейтроны бериллия. Можно предположить, что необычное название данного дизайна - «Лебедь» (первое испытание - Inca в 1956 г.) было подсказано образом взмахнувшего крыльями лебедя, который отчасти ассоциируется с фронтом ударной волны, плавно охватывающим с двух сторон сборку. Таким образом оказалось возможным отказаться от сферической имплозии и, тем самым, уменьшить диаметр имплозивного ядерного боеприпаса с 2 м у бомбы «Толстяк » до 30 см и менее. Для самоликвидации такого боеприпаса без ядерного взрыва инициируется только один из двух детонаторов, и плутониевый заряд разрушается несимметричным взрывом безо всякого риска его имплозии.

Мощность ядерного заряда, работающего исключительно на принципе деления тяжёлых элементов, ограничивается десятками килотонн. Энерговыход (англ. yield ) однофазного боеприпаса, усиленного термоядерным зарядом внутри делящейся сборки, может достигать сотен килотонн. Создать однофазное устройство мегатонного класса практически невозможно, увеличение массы делящегося вещества не решает проблему. Дело в том, что энергия, выделяющаяся в результате цепной реакции, раздувает сборку со скоростью порядка 1000 км/с, поэтому она быстро становится докритической и бо́льшая часть делящегося вещества не успевает прореагировать. Например, в сброшенной на город Нагасаки бомбе «Толстяк » успело прореагировать не более 20 % из 6,2 кг заряда плутония, а в уничтожившей Хиросиму бомбе «Малыш » с пушечной сборкой распалось только 1,4 % из 64 кг обогащенного примерно до 80 % урана. Самый мощный в истории однофазный (британский) боеприпас, взорванный в ходе испытаний Orange Herald в г., достиг мощности 720 кт.

Двухфазные боеприпасы позволяют повысить мощность ядерных взрывов до десятков мегатонн. Однако ракеты с разделяющимися боеголовками, высокая точность современных средств доставки и спутниковая разведка сделали устройства мегатонного класса практически ненужными. Тем более, что носители сверхмощных боеприпасов более уязвимы для систем ПРО и ПВО.

Дизайн Теллера-Улама для двухфазного боеприпаса («термоядерная бомба»).

В двухфазном устройстве первая стадия физического процесса (primary ) используется для запуска второй стадии (secondary ), в ходе которой выделяется наибольшая часть энергии. Такую схему принято называть дизайном Теллера-Улама.

Энергия от детонации primary передаётся через специальный канал (interstage ) в процессе радиационной диффузии квантов рентгеновского излучения и обеспечивает детонацию secondary посредством радиационной имплозии тампера/пушера, внутри которого находится дейтерид лития-6 и запальный плутониевый стержень. Последний также служит дополнительным источником энергии вместе с пушером и/или тампером из урана-235 или урана-238, причем совместно они могут давать до 85 % от общего энерговыхода ядерного взрыва. При этом термоядерный синтез служит в большей мере источником нейтронов для деления ядер. Под действием нейтронов деления на ядра Li в составе дейтерида лития образуется тритий , который сразу вступает в реакцию термоядерного синтеза с дейтерием.

В первом двухфазном экспериментальном устройстве Ivy Mike (10,5 Мт в испытании 1952 г.) вместо дейтерида лития использовались сжиженный дейтерий и тритий, но в последующем крайне дорогой чистый тритий непосредственно в термоядерной реакции второй стадии не применялся. Интересно отметить, что только термоядерный синтез обеспечил 97 % основного энерговыхода экспериментальной советской «Царь-бомбе » (она же «Кузькина мать»), взорванной в 1961 г. с абсолютно рекордным выходом энергии около 58 Мт. Наиболее эффективным по отношению мощность/вес двухфазным боеприпасом стал американский «монстр» Mark 41 с мощностью 25 Мт, который выпускался серийно для развертывания на бомбардировщиках B-47 , B-52 и в варианте моноблока для МБР Титан-2. Тампер этой бомбы выполнен из урана-238, поэтому она никогда не испытывалась в полном масштабе. При замене тампера на свинцовый мощность данного устройства понижалась до 3 Мт.

Средства доставки

Средством доставки ядерного боеприпаса к цели может быть практически любое тяжелое вооружение. В частности, тактическое ядерное оружие с 1950-х существует в форме артиллерийских снарядов и мин - боеприпасов для ядерной артиллерии . Носителями ядерного оружия могут быть реактивные снаряды РСЗО , но пока ядерных снарядов для РСЗО не существует . Однако, габариты многих современных ракет РЗСО позволяют разместить в них ядерный заряд, аналогичный применяемому ствольной артиллерией, в то время как некоторые РСЗО, например российский «Смерч », по дальности практически сравнялись с тактическими ракетами, другие же (например, американская система MLRS) способны запускать со своих установок тактические ракеты . Тактические ракеты и ракеты большей дальности являются носителями ядерного оружия. В Договорах по ограничению вооружений в качестве средств доставки ядерного оружия рассматриваются баллистические ракеты , крылатые ракеты и самолеты . Исторически самолеты были первыми средствами доставки ядерного оружия, и именно с помощью самолетов было выполнено единственное в истории боевое ядерное бомбометание :

  1. На японский город Хиросима 6 августа 1945 года. В 08:15 местного времени самолёт B-29 «Enola Gay» под командованием полковника Пола Тиббетса, находясь на высоте свыше 9 км, произвёл сброс атомной бомбы «Малыш » («Little Boy») на центр Хиросимы. Взрыватель был установлен на высоту 600 метров над поверхностью; взрыв, эквивалентом от 13 до 18 килотонн тротила, произошёл через 45 секунд после сброса.
  2. На японский город Нагасаки 9 августа 1945 года. В 10:56 самолёт В-29 «Bockscar» под командованием пилота Чарльза Суини прибыл к Нагасаки. Взрыв произошёл в 11:02 местного времени на высоте около 500 метров. Мощность взрыва составила 21 килотонну.

Развитие систем ПВО и ракетного оружия выдвинуло на первый план именно ракеты.

«Старые» ядерные державы США, Россия, Великобритания, Франция и Китай являются т. н. ядерной пятёркой - то есть государствами, которые считаются «легитимными» ядерными державами согласно Договору о нераспространении ядерного оружия . Остальные страны, обладающие ядерным оружием, называются «молодыми» ядерными державами.

Кроме того, на территории нескольких государств, которые являются членами НАТО и другими союзниками, находится или может находиться ядерное оружие США. Некоторые эксперты считают, что в определенных обстоятельствах эти страны могут им воспользоваться .

Испытание термоядерной бомбы на атолле Бикини, 1954 г. Мощность взрыва 11 Мт, из которых 7 Мт выделилось от деления тампера из урана-238

Взрыв первого советского ядерного устройства на Семипалатинском полигоне 29 августа 1949 года. 10 часов 05 минут.

СССР испытал своё первое ядерное устройство мощностью 22 килотонны 29 августа 1949 года на Семипалатинском полигоне . Испытание первой в мире термоядерной бомбы - там же 12 августа 1953 года. Россия стала единственным международно-признанным наследником ядерного арсенала Советского Союза.

Израиль не комментирует информацию о наличии у него ядерного оружия, однако, по единодушному мнению всех экспертов, владеет ядерными боезарядами собственной разработки с конца 1960-х - начала 1970-х гг.

Небольшой ядерный арсенал был у ЮАР , но все шесть собранных ядерных зарядов были добровольно уничтожены при демонтаже режима апартеида в начале 1990-х годов . Полагают, что ЮАР проводила собственные или совместно с Израилем ядерные испытания в районе острова Буве в 1979 году . ЮАР - единственная страна, которая самостоятельно разработала ядерное оружие и при этом добровольно от него отказалась.

По различным причинам добровольно отказались от своих ядерных программ Бразилия , Аргентина , Ливия . В разные годы подозревалось, что ядерное оружие могут разрабатывать ещё несколько стран. В настоящее время предполагается, что наиболее близок к созданию собственного ядерного оружия Иран . Также по мнению многих специалистов, некоторые страны (например, Япония и Германия), не обладающие ядерным оружием, по своим научно-производственным возможностям способны создать его в течение короткого времени после принятия политического решения и финансирования.

Исторически потенциальную возможность создать ядерное оружие второй или даже первой имела нацистская Германия . Однако Урановый проект до разгрома Третьего Рейха завершён не был по ряду причин.

Запасы ядерного оружия в мире

Количество боеголовок (активных и в резерве)

1947 1952 1957 1962 1967 1972 1977 1982 1987 1989 1992 2002 2010
США 32 1005 6444 ≈26000 >31255 ≈27000 ≈25000 ≈23000 ≈23500 22217 ≈12000 ≈10600 ≈8500
СССР/Россия - 50 660 ≈4000 8339 ≈15000 ≈25000 ≈34000 ≈38000 ≈25000 ≈16000 ≈11000
Великобритания - - 20 270 512 ≈225

Список ядерных держав мира на 2019 год насчитывает десять основных государств. Информация, у каких стран есть ядерный потенциал и в каких единицах он выражается количественно, базируется на данных Стокгольмского международного института исследования проблем мира и Business Insider.

Девять стран, официально являющиеся обладателями ОМП, образуют так называемый «Ядерный клуб».


Данных нет.
Первое испытание: данных нет.
Последнее испытание: данных нет.

На сегодняшний день официально известно, какие страны обладают ядерным оружием. И Иран не входит в их число. Однако он не сворачивал работу над ядерной программой и ходят упорные слухи, что эта страна обладает собственным ядерным вооружением. Иранские власти заявляют, что вполне могут его себе построить, однако по идейным соображениям ограничиваются только использованием урана в мирных целях.

Пока что использование Ираном атома находится под контролем МАГАТЭ в результате соглашения от 2015 г., но вскоре статус кво может подвергнуться изменениям – в октябре 2017 года Дональд Трамп заявил, что текущая ситуация более не соответствует интересам США. Насколько это заявление изменит текущую политическую обстановку, еще предстоит выяснить.


Количество ядерных боеголовок:
10-60
Первое испытание: 2006 г.
Последнее испытание: 2018 г.

В список стран, имеющих ядерное оружие в 2019 году, к вящему ужасу западного мира, вошла КНДР. Заигрывания с атомом в Северной Корее начались еще с середины прошлого века, когда напуганный планами США по бомбежке Пхеньяна Ким Ир Сен обратился за помощью к СССР и Китаю. Разработка ядерного оружия была начата в 1970-х годах, замерла с улучшением политической обстановки в 90-х годах и закономерно продолжилась при ее ухудшении. Уже начиная с 2004 года в «могучей процветающей державе» происходили ядерные испытания. Разумеется, как уверяют корейские военные, в сугубо безобидных целях – с целью освоения космоса.

Напряженности добавляет и то, что точное количество ядерных боеголовок КНДР неизвестно. По одним данным их количество не превышает 20, по другим — достигает 60 единиц.


Количество ядерных боеголовок:
80
Первое испытание: 1979 г.
Последнее испытание: 1979 г.

Израиль никогда не говорил, что владеет ядерным оружием – но и не утверждал и обратного. Пикантность ситуации придает то, что Израиль отказался подписать «Договор о нераспространении ядерного оружия». Наряду с этим «земля обетованная» бдительно следит за мирным и не очень атомом у соседей и в случае необходимости не стесняется бомбить ядерные центры других стран – как это было с Ираком в 1981 году. По слухам, у Израиля имеются все возможности для создания ядерной бомбы еще начиная с 1979 года, когда в Южной Атлантике были зафиксированы подозрительно похожие на ядерные взрывы световые вспышки. Предполагается, что за это испытание ответственен то ли Израиль, то ли ЮАР, то ли оба этих государства вместе.


Количество ядерных боеголовок:
120-130
Первое испытание: 1974 г.
Последнее испытание: 1998 г.

Несмотря на успешно взорванный ядерный заряд еще в далеком 1974 году, официально Индия признала себя ядерной державой только в конце прошлого века. Правда, взорвав три ядерных устройства в мае 1998 года, уже через два дня после этого Индия заявила об отказе от дальнейших испытаний.


Количество ядерных боеголовок:
130-140
Первое испытание: 1998 г.
Последнее испытание: 1998 г.

Немудрено, что обладающие общей границей и пребывающие в состоянии перманентного недружелюбия Индия и Пакистан стремятся обогнать и перегнать соседа – в том числе и области ядерной. После индийского взрыва 1974 года разработка Исламабадом собственного была только вопросом времени. Как заявил тогдашний премьер-министр Пакистана: «Если Индия создаст свое ядерное оружие, мы сделаем свое, даже если придется питаться травой». И они таки ее сделали, правда, с двадцатилетним опозданием.

После проведения Индией испытаний в 1998 году Пакистан оперативно провел свои, взорвав на полигоне Чагай несколько ядерных бомб.


Количество ядерных боеголовок:
215
Первое испытание: 1952 г.
Последнее испытание: 1991 г.

Великобритания – единственная страна ядерной пятёрки, не проводившая испытаний на своей территории. Все ядерные взрывы британцы предпочитали делать в Австралии и Тихом океане, однако с 1991 года было решено их прекратить. Правда, в 2015 году Дэвид Кэмерон поддал огоньку, признав, что Англия при необходимости готова сбросить пару-тройку бомб. Но на кого именно – не сообщил.


Количество ядерных боеголовок:
270
Первое испытание: 1964 г.
Последнее испытание: 1996 г.

Китай – единственная страна, которая взяла на себя обязательство не наносить ядерные удары (и не угрожать их нанесением) по не-ядерным государствам. А в начале 2011 года Китай заявил, что будет поддерживать свое вооружение лишь на минимальном достаточном уровне. Однако, с тех пор оборонщики Поднебесной изобрели четыре типа новых баллистических ракет, которые способны нести ядерные боеголовки. Так что вопрос в точном количественном выражении этого «минимального уровня» остается открытым.


Количество ядерных боеголовок:
300
Первое испытание: 1960 г.
Последнее испытание: 1995 г.

В общей сложности Франция провела более двухсот испытаний ядерного оружия – начиная от взрыва в тогдашней колонии Франции Алжире и заканчивая двумя атоллами Французской Полинезии.

Интересно, что Франция стабильно отказывалась принять участие в мирных инициативах других ядерных стран. Она не присоединилась к мораторию на проведение ядерных испытаний в конце 50-х годов прошлого века, не подписала договор о запрещении военных ядерных испытаний в 60-х, а к «Договору о нераспространении» присоединилась лишь в начале 90-х.


Количество ядерных боеголовок:
6800
Первое испытание: 1945 г.
Последнее испытание: 1992 г.

Страна, обладающая также является первой державой, осуществившей ядерный взрыв, и первой и единственной на настоящий момент, применившей ядерное оружие в боевой обстановке. С тех пор США произвели 66,5 тысяч единиц атомного оружия более чем 100 различных модификаций. Основной массив ядерного оружия США составляют баллистические ракеты на подводных лодках. Интересно, что США (как и Россия) отказались участвовать в начавшихся весной 2017 года переговорах о полном отказе от ядерного оружия.

Военная доктрина США гласит, что Америка оставляет за собой достаточное количество оружия, чтобы гарантировать как собственную безопасность, так и безопасность своих союзников. Кроме того, США обещались не наносить удары по не-ядерным государствам, если те выполняют условия «Договора о нераспространении».

1. Россия


Количество ядерных боеголовок:
7000
Первое испытание: 1949 г.
Последнее испытание: 1990 г.

Часть ядерного вооружения досталась России в наследство после прекращения существования СССР – с военных баз бывших союзных республик были вывезены имеющиеся ядерные боеголовки. Как утверждают российские военные, они могут решиться на использование ядерного оружия в ответ на аналогичные действия. Или в случае нанесения ударов оружием обычным, вследствие которых само существование России окажется под угрозой.

Будет ли ядерная война между КНДР и США

Если в конце прошлого века основным источником страхов перед ядерной войной служили обостренные отношения между Индией и Пакистаном, то главная страшилка века нынешнего – ядерное противостояние между КНДР и США. Угрожать Северной Корее ядерными ударами – добрая традиция США с 1953 года, но с появлением у КНДР собственных атомных бомб ситуация вышла на новый уровень. Отношения между Пхеньяном и Вашингтоном накалены до предела. Будет ли ядерная война между КНДР и США? Возможно и будет, если Трамп решит, что северокорейцев нужно остановить, пока они не успели создать межконтинентальные ракеты, которые гарантированно долетят до западного побережья мирового оплота демократии.

США держат ядерное оружие у границ КНДР уже начиная с 1957 года. А корейский дипломат заявляет, что теперь вся континентальная часть США находится в пределах досягаемости ядерного оружия Северной Кореи.

Что будет с Россией, если начнется война между КНДР и США? В договоре, подписанном между Россией и КНДР, военной статьи нет. Это значит, что когда начнется война, Россия может сохранить нейтралитет – разумеется, решительно осудив действия агрессора. В самом худшем для нашей страны варианте Владивосток может накрыть радиоактивными осадками от уничтоженных объектов КНДР.

После окончания Второй Мировой войны страны антигитлеровской коалиции стремительными темпами пытались опередить друг друга в разработках более мощной ядерной бомбы.

Первое испытание, проведённое американцами на реальных объектах в Японии, до предела накалило обстановку между СССРи США. Мощные взрывы, прогремевшие в японских городах и практически уничтожившие всё живое в них, заставили Сталина отказаться от множества притязаний на мировой арене. Большинство советских учёных-физиков было в срочном порядке «брошены» на разработку ядерного оружия.

Когда и как появилось ядерное оружие

Годом рождения атомной бомбы можно считать 1896 год. Именно тогда учёный-химик из Франции А. Беккерель открыл, что уран радиоактивен. Цепная реакция урана образует мощную энергию, которая служит основой для страшного взрыва. Вряд ли Беккерель предполагал, что его открытие приведёт к созданию ядерного оружия — самого страшного оружия во всём мире.

Конец 19 — начало 20 века стал переломным моментом в истории изобретения ядерного оружия. Именно в этом временном промежутке учёные различных стран мира смогли открыть следующие законы, лучи и элементы:

  • Альфа, гамма и бета лучи;
  • Было открыто множество изотопов химических элементов, обладающих радиоактивными свойствами;
  • Был открыт закон радиоактивного распада, который определяет временную и количественную зависимость интенсивности радиоактивного распада, зависящую от количества радиоактивных атомов в испытуемом образце;
  • Зародилась ядерная изометрия.

В 1930-х годах впервые смогли расщепить атомное ядро урана с поглощением нейтронов. В это же время были открыты позитроны и нейроны. Всё это дало мощный толчок к разработкам оружия, которое использовало атомную энергию. В 1939 году была запатентована первая в мире конструкция атомной бомбы. Это сделал физик из Франции Фредерик Жолио-Кюри.

В результате дальнейших исследований и разработок в данной сфере, на свет появилась ядерная бомба. Мощность и радиус поражения современных атомных бомб настолько велик, что страна, которая обладает ядерным потенциалом, практически не нуждается в мощной армии, так как одна атомная бомба способна уничтожить целое государство.

Как устроена атомная бомба

Атомная бомба состоит из множества элементов, главными из которых являются:

  • Корпус атомной бомбы;
  • Система автоматики, контролирующая процесс взрыва;
  • Ядерного заряда или боеголовки.

Система автоматики находится в корпусе атомной бомбы, вместе с ядерным зарядом. Конструкция корпуса должна быть достаточно надёжной, чтобы уберечь боеголовку от различных внешних факторов и воздействий. Например, различного механического, температурного или подобного влияния, которое может привести к незапланированному взрыву огромной мощности, способному уничтожить всё вокруг.

В задачу автоматики входит полный контроль над тем, чтобы взрыв произошёл в нужное время, поэтому система состоит из следующих элементов:

  • Устройство, отвечающее за аварийный подрыв;
  • Источник питания системы автоматики;
  • Система датчиков подрыва;
  • Устройство взведения;
  • Устройство предохранения.

Когда проводились первые испытания, ядерные бомбы доставлялись на самолётах, которые успевали покинуть зону поражения. Современные атомные бомбы обладают такой мощностью, что их доставка может осуществляться только с помощью крылатых, баллистических или хотя бы зенитных ракет.

В атомных бомбах применяются различные системы детонирования. Самая простейшая из них – это обычное устройство, которое срабатывает при попадании снаряда в цель.

Одной из основных характеристик ядерных бомб и ракет, является разделение их на калибры, которые бывают трёх типов:

  • Малый, мощность атомных бомб данного калибра эквивалентна нескольким тысячам тонн тротила;
  • Средний (мощность взрыва – несколько десятков тысяч тонн тротила);
  • Крупный, мощность заряда которого измеряется миллионами тонн тротила.

Интересно, что чаще всего мощность всех ядерных бомб измеряется именно в тротиловом эквиваленте, так как для атомного оружие не существует своей шкалы измерения мощности взрыва.

Алгоритмы действия ядерных бомб

Любая атомная бомба действует по принципу использования ядерной энергии, которая выделяется в ходе ядерной реакции. В основе данной процедуры лежит или деление тяжёлых ядер или синтез лёгких. Так как в ходе данной реакции выделяется огромное количество энергии, причём в кратчайшее время, радиус поражения ядерной бомбы очень впечатляет. Из-за этой особенности ядерное оружие относят к классу оружия массового поражения.

В ходе процесса, который запускается при взрыве атомной бомбы, имеются два главных момента:

  • Это непосредственный центр взрыва, где проходит ядерная реакция;
  • Эпицентр взрыва, который находится на месте, где взорвалась бомба.

Ядерная энергия, выделяемая при взрыве атомной бомбы, настолько сильна, что на земле начинаются сейсмические толчки. При этом непосредственные разрушения данные толчки приносят лишь на расстоянии нескольких сотен метров (хотя если учитывать силу взрыва самой бомбы, данные толчки уже ни на что не влияют).

Факторы поражения при ядерном взрыве

Взрыв ядерной бомбы приносит не только ужасные мгновенные разрушения. Последствия данного взрыва ощутят на себе не только люди, попавшие в зону поражения, но и их дети, родившиеся после атомного взрыва. Типы поражения атомным оружием подразделяются на следующие группы:

  • Световое излучение, которое происходит непосредственно при взрыве;
  • Ударная волна, распространяемая бомбой сразу после взрыва;
  • Электромагнитный импульс;
  • Проникающая радиация;
  • Радиоактивное заражение, которое может сохраниться на десятки лет.

Хотя на первый взгляд, световая вспышка несет меньше всего угрозы, на самом деле она образуется в результате высвобождения огромного количества тепловой и световой энергии. Её мощность и сила намного превосходит мощность лучей солнца, поэтому поражение светом и теплом может стать фатальным на расстоянии нескольких километров.

Радиация, которая выделяется при взрыве, тоже очень опасна. Хотя она действует недолго, но успевает заразить всё вокруг, так как её проникающая способность невероятно велика.

Ударная волна при атомном взрыве действует подобно такой же волне при обычных взрывах, только её мощность и радиус поражения намного больше. За несколько секунд она наносит непоправимые повреждения не только людям, но и технике, зданиям и окружающей природе.

Проникающая радиация провоцирует развитие лучевой болезни, а электромагнитный импульс представляет опасность только для техники. Совокупность всех этих факторов, плюс мощность взрыва, делают атомную бомбу самым опасным оружием в мире.

Первые в мире испытания ядерного оружия

Первой страной, разработавшей и испытавшей ядерное оружие, оказались Соединённые Штаты Америки. Именно правительство США выделило огромные денежные дотации на разработку нового перспективного оружия. К концу 1941 года в США были приглашены многие выдающиеся учёные в сфере атомных разработок, которые уже к 1945 году смогли представить опытный образец атомной бомбы, пригодный для испытаний.

Первые в мире испытания атомной бомбы, оснащенной взрывным устройством, были проведены в пустыне на территории штата Нью-Мексико. Бомба под названием «Gadget» была взорвана 16 июля 1945 года. Результат испытаний оказался положительным, хотя военные требовали испытать ядерную бомбу в реальных боевых условиях.

Увидев, что до победы на гитлеровской коалицией остался всего один шаг, и больше такой возможности может не представиться, Пентагон решил нанести ядерный удар по последнему союзнику гитлеровской Германии – Японии. Кроме того, использование ядерной бомбы должно было решить сразу несколько проблем:

  • Избежать ненужного кровопролития, которое неизбежно бы случилось, если бы войска США ступили на территорию императорской Японии;
  • Одним ударом поставить на колени неуступчивых японцев, заставив их пойти на условия, выгодные США;
  • Показать СССР (как возможному сопернику в будущем), что армия США обладает уникальным оружием, способным стереть с лица земли любой город;
  • И, конечно же, на практике убедиться, на что способно ядерное оружие в реальных боевых условиях.

6 августа 1945 года на японский город Хиросима была сброшена первая в мире атомная бомба, которая применялась в военных действиях. Эту бомбу назвали «Малыш», так как её вес составлял 4 тонны. Сброс бомбы был тщательно спланирован, и она попала именно туда, куда и планировалось. Те дома, которые не были разрушены взрывной волной, сгорели, так как упавшие в домах печки спровоцировали пожары, и весь город был объят пламенем.

После яркой вспышки последовала тепловая волна, которая сожгла всё живое в радиусе 4 километров, а последовавшая за ней ударная волна разрушила большую часть зданий.

Те, кто попал под тепловой удар в радиусе 800 метров, были сожжены заживо. Взрывной волной у многих сорвало обгоревшую кожу. Через пару минут прошёл странный чёрный дождь, который состоял из пара и пепла. У тех, кто попал под чёрный дождь, кожа получила неизлечимые ожоги.

Те немногие, которым посчастливилось уцелеть, заболели лучевой болезнью, которая в то время была не только не изучена, но и полностью неизвестна. У людей началась лихорадка, рвота, тошнота и приступы слабости.

9 августа 1945 года на город Нагасаки была сброшена вторая американская бомба, которая называлась «Толстяк». Данная бомба имела примерно такую же мощность, как и первая, а последствия её взрыва были столь же разрушительные, хотя людей погибло в два раза меньше.

Две атомные бомбы, сброшенные на японские города, оказались первым и единственным в мире случаями применения атомного оружия. Более 300 000 человек погибли в первые дни после бомбардировки. Ещё около 150 тысяч погибли от лучевой болезни.

После ядерной бомбардировки японских городов, Сталин получил настоящий шок. Ему стало ясно, что вопрос разработки ядерного оружия в советской России – это вопрос безопасности всей страны. Уже 20 августа 1945 года начал работать специальный комитет по вопросам атомной энергии, который был в срочном порядке создан И. Сталиным.

Хотя исследования по ядерной физике проводились группой энтузиастов ещё в царской России, в советское время ей не уделяли должного внимания. В 1938 году все исследования в этой области были полностью прекращены, а многие учёные-ядерщики репрессированы, как враги народа. После ядерных взрывов в Японии советская власть резко начала восстанавливать ядерную отрасль в стране.

Имеются данные, что разработка ядерного оружия велась в гитлеровской Германии, и именно немецкие учёные доработали «сырую» американскую атомную бомбу, поэтому правительство США вывезло из Германии всех специалистов-атомщиков и все документы, связанные с разработкой ядерного оружия.

Советская разведывательная школа, которая за время войны смогла обойти все зарубежные разведки, ещё в 1943 году передавала в СССР секретные документы, связанные с разработкой ядерного оружия. В то же время были внедрены советские агенты во все серьёзные американские центры ядерных исследований.

В результате всех этих мер, уже в 1946 году было готово техническое задание по изготовлению двух ядерных бомб советского производства:

  • РДС-1 (с плутониевым зарядом);
  • РДС-2 (с двумя частями уранового заряда).

Аббревиатура «РДС» расшифровывалась как «Россия делает сама», что практически полностью соответствовало действительности.

Новости о том, что СССР готов выпустить своё ядерное оружие, заставило правительство США пойти на радикальные меры. В 1949 году был разработан план «Троян», согласно которому на 70 крупнейших городов СССР планировалось сбросить атомные бомбы. Лишь опасения ответного удара помешали этому плану осуществиться.

Данные тревожные сведения, поступающие от советских разведчиков, заставили учёных работать в авральном режиме. Уже в августе 1949 года состоялись испытания первой атомной бомбы, произведённой в СССР. Когда США узнала про эти испытания, план «Троян» был отложен на неопределённое время. Началась эпоха противостояния двух сверх держав, известная в истории как «Холодная война».

Самая мощная ядерная бомба в мире, известная под именем «Царь-бомбы» принадлежит именно периоду «Холодной войны». Учёные СССР создали самую мощную бомбу в истории человечества. Её мощность составляла 60 мегатонн, хотя планировалось создать бомбу в 100 килотонн мощности. Испытания данной бомбы прошли в октябре 1961 года. Диаметр огненного шара при взрыве составил 10 километров, а взрывная волна облетела земной шар три раза. Именно это испытание заставило большинство стран мира подписать договор о прекращении ядерных испытаний не только в атмосфере земли, но даже в космосе.

Хотя атомное оружие является превосходным средством устрашения агрессивных стран, с другой стороны оно способно гасить любые военные конфликты в зародыше, так как при атомном взрыве могут быть уничтожены все стороны конфликта.