Меню
Бесплатно
Главная  /  Овуляция  /  Ионно плазменное азотирование оборудование. Плазменное азотирование - процесс и шаги

Ионно плазменное азотирование оборудование. Плазменное азотирование - процесс и шаги

Privacy Policy

Effective date: October 22, 2018

Ionitech Ltd. ("us", "we", or "our") operates the https://www..

This page informs you of our policies regarding the collection, use, and disclosure of personal data when you use our Service and the choices you have associated with that data.

We use your data to provide and improve the Service. By using the Service, you agree to the collection and use of information in accordance with this policy. Unless otherwise defined in this Privacy Policy, terms used in this Privacy Policy have the same meanings as in our Terms and Conditions, accessible from https://www.сайт/

Information Collection And Use

We collect several different types of information for various purposes to provide and improve our Service to you.

Types of Data Collected

Personal Data

While using our Service, we may ask you to provide us with certain personally identifiable information that can be used to contact or identify you ("Personal Data"). Personally identifiable information may include, but is not limited to:

  • Cookies and Usage Data

Usage Data

We may also collect information how the Service is accessed and used ("Usage Data"). This Usage Data may include information such as your computer"s Internet Protocol address (e.g. IP address), browser type, browser version, the pages of our Service that you visit, the time and date of your visit, the time spent on those pages, unique device identifiers and other diagnostic data.

Tracking & Cookies Data

We use cookies and similar tracking technologies to track the activity on our Service and hold certain information.

Cookies are files with small amount of data which may include an anonymous unique identifier. Cookies are sent to your browser from a website and stored on your device. Tracking technologies also used are beacons, tags, and scripts to collect and track information and to improve and analyze our Service.

You can instruct your browser to refuse all cookies or to indicate when a cookie is being sent. However, if you do not accept cookies, you may not be able to use some portions of our Service.

Examples of Cookies we use:

  • Session Cookies. We use Session Cookies to operate our Service.
  • Preference Cookies. We use Preference Cookies to remember your preferences and various settings.
  • Security Cookies. We use Security Cookies for security purposes.

Use of Data

Ionitech Ltd. uses the collected data for various purposes:

  • To provide and maintain the Service
  • To notify you about changes to our Service
  • To allow you to participate in interactive features of our Service when you choose to do so
  • To provide customer care and support
  • To provide analysis or valuable information so that we can improve the Service
  • To monitor the usage of the Service
  • To detect, prevent and address technical issues

Transfer Of Data

Your information, including Personal Data, may be transferred to - and maintained on - computers located outside of your state, province, country or other governmental jurisdiction where the data protection laws may differ than those from your jurisdiction.

If you are located outside Bulgaria and choose to provide information to us, please note that we transfer the data, including Personal Data, to Bulgaria and process it there.

Your consent to this Privacy Policy followed by your submission of such information represents your agreement to that transfer.

Ionitech Ltd. will take all steps reasonably necessary to ensure that your data is treated securely and in accordance with this Privacy Policy and no transfer of your Personal Data will take place to an organization or a country unless there are adequate controls in place including the security of your data and other personal information.

Disclosure Of Data

Legal Requirements

Ionitech Ltd. may disclose your Personal Data in the good faith belief that such action is necessary to:

  • To comply with a legal obligation
  • To protect and defend the rights or property of Ionitech Ltd.
  • To prevent or investigate possible wrongdoing in connection with the Service
  • To protect the personal safety of users of the Service or the public
  • To protect against legal liability

Security Of Data

The security of your data is important to us, but remember that no method of transmission over the Internet, or method of electronic storage is 100% secure. While we strive to use commercially acceptable means to protect your Personal Data, we cannot guarantee its absolute security.

Service Providers

We may employ third party companies and individuals to facilitate our Service ("Service Providers"), to provide the Service on our behalf, to perform Service-related services or to assist us in analyzing how our Service is used.

These third parties have access to your Personal Data only to perform these tasks on our behalf and are obligated not to disclose or use it for any other purpose.

Analytics

We may use third-party Service Providers to monitor and analyze the use of our Service.

    Google Analytics

    Google Analytics is a web analytics service offered by Google that tracks and reports website traffic. Google uses the data collected to track and monitor the use of our Service. This data is shared with other Google services. Google may use the collected data to contextualize and personalize the ads of its own advertising network.

    You can opt-out of having made your activity on the Service available to Google Analytics by installing the Google Analytics opt-out browser add-on. The add-on prevents the Google Analytics JavaScript (ga.js, analytics.js, and dc.js) from sharing information with Google Analytics about visits activity.

    For more information on the privacy practices of Google, please visit the Google Privacy & Terms web page: https://policies.google.com/privacy?hl=en

Links To Other Sites

Our Service may contain links to other sites that are not operated by us. If you click on a third party link, you will be directed to that third party"s site. We strongly advise you to review the Privacy Policy of every site you visit.

We have no control over and assume no responsibility for the content, privacy policies or practices of any third party sites or services.

Children"s Privacy

Our Service does not address anyone under the age of 18 ("Children").

We do not knowingly collect personally identifiable information from anyone under the age of 18. If you are a parent or guardian and you are aware that your Children has provided us with Personal Data, please contact us. If we become aware that we have collected Personal Data from children without verification of parental consent, we take steps to remove that information from our servers.

Changes To This Privacy Policy

We may update our Privacy Policy from time to time. We will notify you of any changes by posting the new Privacy Policy on this page.

We will let you know via email and/or a prominent notice on our Service, prior to the change becoming effective and update the "effective date" at the top of this Privacy Policy.

You are advised to review this Privacy Policy periodically for any changes. Changes to this Privacy Policy are effective when they are posted on this page.

Contact Us

If you have any questions about this Privacy Policy, please contact us:

  • By email:

Улучшение свойств металла может проходить путем изменения его химического состава. Примером можно назвать азотирование стали – относительно новая технология насыщения поверхностного слоя азотом, которая стала применяться в промышленных масштабах около столетия назад. Рассматриваемая технология была предложена для улучшения некоторых качеств продукции, изготавливаемой из стали. Рассмотрим подробнее то, как проводится насыщение стали азотом.

Назначение азотирования

Многие сравнивают процесс цементирования и азотирования по причине того, что оба предназначены для существенного повышения эксплуатационных качеств детали. Технология внесения азота имеет несколько преимуществ перед цементацией, среди которых отмечают отсутствие необходимости повышения температуры заготовки до значений, при которых проходит пристраивание атомной решетки. Также отмечается тот факт, что технология внесения азота практически не изменяет линейные размеры заготовок, за счет чего ее можно применять после финишной обработки. На многих производственных линиях азотированию подвергают детали, которые прошли закалку и шлифование, практически готовы к выпуску, но нужно улучшить некоторые качества.

Назначение азотирования связано с изменением основных эксплуатационных качеств в процессе нагрева детали в среде, которая характеризуется высокой концентрацией аммиака. За счет подобного воздействия поверхностный слой насыщается азотом, и деталь приобретает следующие эксплуатационные качества:

  1. Существенно повышается износостойкость поверхности за счет возросшего индекса твердости.
  2. Улучшается значение выносливости и сопротивление к росту усталости структуры металла.
  3. Во многих производствах применение азотирования связано с необходимостью придания антикоррозионной стойкости, которая сохраняется при контакте с водой, паром или воздухом с повышенной влажностью.

Вышеприведенная информация определяет то, что результаты азотирования более весомы, чем цементации. Преимущества и недостатки процесса во многом зависят от выбранной технологии. В большинстве случаев переданные эксплуатационные качества сохраняются даже при нагреве заготовки до температуры 600 градусов Цельсия, в случае цементирования поверхностный слой теряет твердость и прочность после нагрева до 225 градусов Цельсия.

Технология процесса азотирования

Во многом процесс азотирования стали превосходит другие методы, предусматривающие изменение химического состава металла. Технология азотирования деталей из стали обладает следующими особенностями:

  1. В большинстве случаев процедура проводится при температуре около 600 градусов Цельсия. Деталь помещается в герметичную муфельную печь из железа, которая помещается в печи.
  2. Рассматривая режимы азотирования, следует учитывать температуру и время выдержки. Для разных сталей эти показатели будут существенно отличаться. Также выбор зависит от того, каких эксплуатационных качеств нужно достигнуть.
  3. В созданный контейнер из металла проводится подача аммиака из баллона. Высокая температура приводит к тому, что аммиак начинает разлагаться, за счет чего начинают выделяться молекулы азота.
  4. Молекулы азота проникают в металл по причине прохождения процесса диффузии. Засчет этого на поверхности активно образуются нитриды, которые характеризуются повышенной устойчивостью к механическому воздействию.
  5. Процедура химико-термического воздействия в данном случае не предусматривает резкое охлаждение. Как правило, печь для азотирования охлаждается вместе с потоком аммиака и деталью, за счет чего поверхность не окисляется. Поэтому рассматриваемая технология подходит для изменения свойств деталей, которые уже прошли финишную обработку.

Классический процесс получения требуемого изделия с проведением азотирования предусматривает несколько этапов:

  1. Подготовительная термическая обработка, которая заключается в закалке и отпуске. За счет перестроения атомной решетки при заданном режиме структура становится более вязкой, повышается прочность. Охлаждение может проходить в воде или масле, иной среде – все зависит от того, насколько качественным должно быть изделие.
  2. Далее выполняется механическая обработка для придания нужной форы и размеров.
  3. В некоторых случаях есть необходимость в защите определенных частей изделия. Защита проводится путем нанесения жидкого стекла или олова слоем толщиной около 0,015 мм. За счет этого на поверхности образуется защитная пленка.
  4. Выполняется азотирование стали по одной из наиболее подходящих методик.
  5. Проводятся работы по финишной механической обработке, снятию защитного слоя.

Получаемый слой после азотирования, который представлен нитридом, составляет от 0,3 до 0,6 мм, за счет чего отпадает необходимость в проведении процедуры закаливания. Как ранее было отмечено, азотирование проводят относительно недавно, но сам процесс преобразования поверхностного слоя металла был уже практически полностью изучен, что позволило существенно повысить эффективность применяемой технологии.

Металлы и сплавы, подвергаемые азотированию

Существуют определенные требования, которые предъявляются к металлам перед проведением рассматриваемой процедуры. Как правило, уделяется внимание концентрации углерода. Виды сталей, подходящих для азотирования, самые различные, главное условие заключается в доле углерода 0,3-0,5%. Лучших результатов достигают при применении легированных сплавов, так как дополнительные примеси способствуют образованию дополнительных твердых нитритов. Примером химической обработки металла назовем насыщение поверхностного слоя сплавов, которые в составе имеют примеси в виде алюминия, хрома и другие. Рассматриваемые сплавы принято называть нитраллоями.

Внесение азота проводится при применении следующих марок стали:

  1. Если на деталь будет оказываться существенное механическое воздействие при эксплуатации, то выбирают марку 38Х2МЮА. В ее состав входит алюминий, который становится причиной снижения деформационной стойкости.
  2. В станкостроении наиболее распространение получили стали 40Х и 40ХФА.
  3. При изготовлении валов, которые часто подвергаются изгибающим нагрузкам применяют марки 38ХГМ и 30ХЗМ.
  4. Если при изготовлении нужно получить высокую точность линейный размеров, к примеру, при создании деталей топливных агрегатов, то используется марка стали 30ХЗМФ1. Для того чтобы существенно повысить прочность поверхности и ее твердость, предварительно проводят легирование кремнем.

При выборе наиболее подходящей марки стали главное соблюдать условие, связанное с процентным содержанием углерода, а также учитывать концентрацию примесей, которые также оказывают существенное воздействие на эксплуатационные свойства металла.

Основные виды азотирования

Выделяют несколько технологий, по которым проводят азотирование стали. В качестве примера приведем следующий список:

  1. Аммиачно-пропановая среда. Газовое азотирование сегодня получило весьма большое распространение. В данном случае смесь представлена сочетанием аммиака и пропана, которые берутся в соотношении 1 к 1. Как показывает практика, газовое азотирование при применении подобной среды требует нагрева до температуры 570 градусов Цельсия и выдержки в течение 3-х часов. Образующийся слой нитридов характеризуется небольшой толщиной, но при этом износостойкость и твердость намного выше, чем при применении классической технологии. Азотирование стальных деталей в данном случае позволяет повысить твердость поверхности металла до 600-1100 HV.
  2. Тлеющий разряд – методика, которая также предусматривает применение азотсодержащей среды. Ее особенность заключается в подключении азотируемых деталей к катоду, в качестве положительного заряда выступает муфель. За счет подключение катода есть возможность ускорить процесс в несколько раз.
  3. Жидкая среда применяется чуть реже, но также характеризуется высокой эффективностью. Примером можно назвать технологию, которая предусматривает использование расплавленного цианистого слоя. Нагрев проводится до температуры 600 градусов, период выдержки от 30 минут до 3-х часов.

В промышленности наибольшее распространение получила газовая среда за счет возможность обработки сразу большой партии.

Каталитическое газовое азотирование

Данная разновидность химической обработки предусматривает создание особой атмосферы в печке. Диссоциированный аммиак проходит предварительную обработку на специальном каталитическом элементе, что существенно повышает количество ионизированных радикалов. Особенности технологии заключаются в нижеприведенных моментах:

  1. Предварительная подготовка аммиака позволяет увеличить долю твердорастворной диффузии, что снижает долю реакционных химических процессов при переходе активного вещества от окружающей среды в железо.
  2. Предусматривает применение специального оборудования, которое обеспечивает наиболее благоприятные условия химической обработки.

Применяется данный метод на протяжении нескольких десятилетий, позволяет изменять свойства не только металлов, но и титановых сплавов. Высокие затраты на установку оборудования и подготовку среды определяют применимость технологии к получению ответственных деталей, которые должны обладать точными размерами и повышенной износостойкостью.

Свойства азотированных металлических поверхностей

Довольно важным является вопрос о том, какая достигается твердость азотированного слоя. При рассмотрении твердости учитывается тип обрабатываемой стали:

  1. Углеродистая может иметь твердость в пределах 200-250HV.
  2. Легированные сплавы после проведения азотирования обретают твердость в пределе 600-800HV.
  3. Нитраллои, которые имеют в составе алюминий, хром и другие металлы, могут получить твердость до 1200HV.

Другие свойства стали также изменяются. К примеру, повышается коррозионная стойкость стали, за счет чего ее можно использовать в агрессивной среде. Сам процесс внесения азота не приводит к появлению дефектов, так как нагрев проводится до температуры, которая не изменяет атомную решетку.

А.В. АРЗАМАСОВ
МГТУ им. Н. Э. Баумана
ISSN 0026-0819. «Металловедение и термическая обработка металлов», № 1. 1991 г.

Разработка новых производственных процессов ионного азотирования с целью повышения износостойкости поверхности деталей, изготовленных из аустенитных сталей, является актуальной задачей

Аустенитные стали относятся к трудноазотируемым, так как их поверхностные оксидные пленки препятствуют насыщению азотом и коэффициент диффузии азота в аустените меньше, чем в феррите. В связи с этим для удаления оксидных пленок при обычном азотировании необходима предварительная обработка поверхности стали или применение депассиваторов.

Обычное азотирование большинства аустенитных сталей проводят в аммиаке при 560-600 °С в течение 48-60 ч. Однако эти режимы не позволяют получить диффузионные слои толщиной более 0,12-0,15 мм, а на стали 45Х14Н14В2М (ЭИ69) невозможно получить толщину диффузионного слоя более 0,12 мм даже при азотировании в течение 100 ч. Повышение температуры азотирования в печи выше 700 °С приводит к более полной диссоциации аммиака и, вследствие этого, к понижению активности процесса.

Как правило, после обычного азотирования ухудшается коррозионная стойкость поверхностных слоев аустенитных сталей .

Ионное азотирование аустенитных сталей способствует увеличению коэффициента диффузии азота и не требует применения депассиваторов. При этом сокращается длительность процесса и улучшается качество получаемых азотированных слоев .

Однако ионное азотирование аустенитных сталей по ранее разработанным режимам не позволяло получать диффузионные слои большой толщины даже при длительных выдержках

На основании термодинамических расчетов и экспериментальных исследований был разработан режим ионного азотирования деталей из аустенитных сталей, позволяющий получать качественные глубокие износостойкие немагнитные коррозионно-стойкие диффузионные слои в сравнительно короткое время. Оксидные пленки удалялись с поверхности деталей в процессе химико-термической обработки .

Исследовали стандартные аустенитные стали 45Х14Н14В2М (ЭИ69), 12Х18Н10Т (ЭЯ1Т); 25Х18Н8В2 (ЭИ946) и опытные высокоазотистые, разработанные Институтом металловедения и технологии металлов Болгарской Академии наук - типа Х14АГ20Н8Ф2М (0,46% N), Х18АГ11Н7Ф (0,70% N), Х18АГ12Ф (0,88% N), Х18АГ20Н7Ф (1,09% N), Х18АГ20Ф (1,02% N), Х18АГ20Ф (2,00% N) .

Исследование структуры диффузионных слоев на сталях проводили с помощью металлографического, рентгеноструктурного и микрорентгеноспектрального анализов. Установлено, что структурным критерием высокой износостойкости азотированных аустенитных сталей является наличие в диффузионном слое нитридов типа CrN. Анализ концентрационных кривых химических элементов, полученных с помощью микроанализаторов ISM-35 CF, Cameca MS-46, Camebax 23-APR-85 показал, что по сравнению с другими тяжелыми элементами хром наиболее скачкообразно распределяется по толщине слоя. В сердцевине образцов распределение хрома равномерное.

Неоднократное повторение экспериментов по исследованию распределения азота и хрома по толщине диффузионного слоя выявило синхронные скачкообразные изменения их концентраций. Кроме того, как показали послойные испытания на изнашивание, наибольшую износостойкость имеет микрозона диффузионного слоя с максимальным содержанием азота и хрома (табл. 1).

Таблица 1.

h, мкм Содержание химических элементов, % ε
C N Cr Ni
20 0,70 10,0 19,0 11,0 9,5
40 0,85 12,0 25,0 8,0 10,7
45 0,88 15,0 25,0 8,0 11,2
50 0,92 10,0 25,0 8,0 11,0
70 0,90 0 14,0 12,0 1,7
* — остальное Fe
Примечания: 1. Испытания на изнашивание проводили на машине «Шкода-Савин».
2. Относительную износостойкость определяли по отношению объёмов вытертых лунок на эталоне (стальной образец с твёрдостью 51 HRC) и исследуемом образце ε = V эт /V обр (относительная износостойкость сердцевины ε=0,08).

Дальнейшее исследование структуры азотированных аустенитных сталей с помощью микрорентгеноспектрального анализа позволило установить, что в микрозонах диффузионных слоев с повышенным содержанием азота и хрома наблюдается пониженная концентрация углерода, никеля и железа (табл. 1).

Сравнительный анализ микроструктуры слоя и сердцевины азотированной стали 45Х14Н14В2М, снятой в характеристическом хромовом К α -излучении показал, что в диффузионном слое содержится больше скоплений «белых точек» - соединений хрома, чем в сердцевине.

Послойные измерения магнитной проницаемости с помощью магнетоскопа F 1.067 и определение содержания ферритной фазы на ферритометре МФ-10И показали, что разработанный способ ионного азотирования деталей из аустенитных сталей способствует получению немагнитных диффузионных слоев (табл. 2).

Таблица 2.

Было также установлено, что азотированные стали 45Х14Н14В2М и типа Х14АГ20Н8Ф2М имеют удовлетворительную коррозионную стойкость.

По новому технологическому процессу была обработана партия шестерен, изготовленных из стали 45Х14Н14В2М. Детали соответствовали техническим требованиям. Микро- и макроструктурный анализ подтвердил наличие у шестерен качественного равномерного диффузионного слоя толщиной 270 мкм.

После длительных промышленных испытаний видимых дефектов на шестернях не обнаружено. Дальнейший контроль показал соответствие геометрических размеров шестерен технологическим требованиям, а также отсутствие изнашивания рабочих поверхностей деталей, что было подтверждено микроструктурным анализом.

Заключение. Разработанный режим ионного азотирования деталей из аустенитных сталей позволяет сократить длительность процесса более чем в 5 раз, при этом толщина слоя увеличивается в 3 раза, а износостойкость слоя - в 2 раза по сравнению с аналогичными параметрами после обычного азотирования. Кроме того, снижается трудоемкость, повышается культура производства и улучшается экологическая обстановка.

Список литературы:
1. Прогрессивные методы химико-термической обработки / Под ред. Г. Н. Дубинина, Я. Д. Когана. М.: Машиностроение, 1979. 184 с.
2. Азотирование и карбонитрирование / Р. Чаттерджи-Фишер, Ф. В. Эйзелл, Р. Хоффман и др.: Пер. с нем. М.: Металлургия, 1990. 280 с.
3. А. с. 1272740 СССР, МКИ С23С8/36.
4. Банных О. А., Блинов В. М. Дисперсионно-твердеющие немагнитные ванадийсодержащие стали. М.: Наука, 1980. 192 с.
5. Рашев Ц. В. Производство легированной стали. М.: Металлургия, 1981. 248 с.


Короткий путь http://bibt.ru

Ионное азотирование.

Иногда такой процесс называют ионитрированием или азотированием в плазме тлеющего разряда. Сущность этого метода заключается в том, что в герметичном контейнере создается разреженная азотосодержащая атмосфера. С этой целью можно использовать чистый азот, аммиак или смесь азота и водорода. Внутри контейнера размещают азотируемые детали, которые подключают к отрицательному полюсу источника постоянного напряжения. Они играют роль катода. Анодом служит стенка контейнера. Между катодом и анодом включается высокое напряжение (500—1000 В). В этих условиях происходит ионизация газа. Образующиеся положительно заряженные ионы азота устремляются к отрицательному полюсу — катоду. Электрическое сопротивление газовой среды вблизи катода резко возрастает, вследствие чего почти все напряжение, подаваемое между анодом и катодом, падает на сопротивление вблизи катода, на расстоянии нескольких миллиметров от него. Благодаря этому создается очень высокая напряженность электрического поля вблизи катода.

Ионы азота, входя в эту зону высокой напряженности, разгоняются до больших скоростей и, соударяясь с деталью (катодом), внедряются в ее поверхность. При этом высокая кинетическая энергия, которую имели ионы азота, переходит в тепловую. В результате деталь за короткое время, примерно 15— 30 мин, разогревается до температуры 470—580°С, при которой происходит диффузия азота в глубь металла, т. е. идет процесс азотирования. Кроме того, при соударении ионов с поверхностью детали происходит выбивание ионов железа с ее поверхности. Благодаря этому происходит очистка поверхности от окисных пленок, препятствующих азотированию. Это особенно важно для азотирования коррозионно-стойких сталей, у которых такая пассивирующая пленка обычными способами удаляется очень трудно.

Ионное азотирование по сравнению с азотированием в печах имеет следующие преимущества:

1) сокращение общей продолжительности процесса в 1,5—2 раза;

2) возможность регулирования процесса с целью получения азотированного слоя с заданными свойствами;

3) меньшую деформацию деталей благодаря равномерному нагреву; 4) возможность азотирования коррозионно-стойких сталей и сплавов без дополнительной депассивирующей обработки.

В нашей компании по выгодной цене вы можете заказать ионно-плазменное азотирование в Нижнем Новгороде. Это одна из разновидностей химической термообработки. Данная технология применяется обычно для обработки изделий и деталей из чугуна, стали и других металлов и сплавов. Применение ионно-плазменного азотирования актуально в том случае, если требуется:

    повысить прочность металла;

    повысить износостойкость изделия;

    минимизировать вероятность прилипания металлов к поверхности формы в процессе литья;

    повысить антизадирные свойств и т. д.

Применяемые нами установки были разработаны специалистами нашей фирмы, поэтому мы досконально знаем, как именно проводится обработка подобного типа. Мы являемся настоящими профессионалами в этой сфере деятельности.

Преимущества сотрудничества с нами

Наша компания более 17 лет работает в сфере производства установок вакуумного напыления покрытий и оказания соответствующих услуг. Поэтому своим клиентам мы можем предложить следующие условия:

    Профессиональная консультационная помощь по любым вопросам и на любом этапе сотрудничества с нами.

    Все работы выполняются нашими квалифицированными специалистами с соблюдением всех международных норм и правил.

    Наши постоянные клиенты и партнеры – крупные предприятия автомобильной, космической, авиационной, химической сфер промышленности.

    Многолетнее сотрудничество с ведущими российскими и зарубежными научно-исследовательскими институтами и предприятиями позволяет нам постоянно повышать качество оказываемых услуг.