Меню
Бесплатно
Главная  /  Выделения  /  Теория относительности является составной частью. Специальная теория относительности Эйнштейна: кратко и простыми словами

Теория относительности является составной частью. Специальная теория относительности Эйнштейна: кратко и простыми словами

На выступлении 27 апреля 1900 года в королевском институте Великобритании лорд Кельвин сказал: «Теоретическая физика представляет собой стройное и законченное здание. На ясном небе физики имеются всего лишь два небольших облачка – это постоянство скорости света и кривая интенсивности излучения в зависимости от длины волны. Я думаю, что эти два частных вопроса будут скоро разрешены и физикам XX века уже нечего будет делать.» Лорд Кельвин оказался абсолютно прав с указанием ключевых направлений исследований в физике, но не верно оценил их важность: родившиеся из них теория относительности и квантовая теория оказались бескрайними просторами для исследований, занимающих учёные умы вот уже на протяжении более сотни лет.

Так как не описывала гравитационное взаимодействие, Эйнштейн вскоре после её завершения приступил к разработке общей версии этой теории, за созданием которой он провёл 1907-1915 годы. Теория была прекрасной в своей простоте и согласованности с природными явлениями за исключением единственного момента: во времена составления теории Эйнштейном ещё не было известно об расширении Вселенной и даже о существовании других галактик, поэтому учёными того времени считалось что Вселенная существовала бесконечно долго и была стационарна. При этом из закона всемирного тяготения Ньютона следовало, что неподвижные звёзды должны были в какой-то момент просто быть стянуты в одну точку.

Не найдя для этого явления лучшего объяснения, Эйнштейн ввёл в свои уравнения , которая численно компенсировала и позволяла таким образом стационарной Вселенной существовать без нарушения законов физики. В последствии Эйнштейн стал считать введение космологической постоянной в свои уравнения своей самой большой ошибкой, так как она не была необходима для теории и ничем кроме выглядящей на тот момент стационарной Вселенной не подтверждалось. А в 1965 году было обнаружено реликтовое излучение, что означало что Вселенная имела начало и постоянная в уравнениях Эйнштейна оказалось и вовсе не нужна. Тем не менее космологическая постоянная всё-таки была найдена в 1998 году: по полученным телескопом «Хаббл» данным, далёкие галактики не тормозили свой разлёт в следствии притяжения гравитацией, а даже ускоряли свой разлёт.

Основы теории

Кроме основных постулатов специальной теории относительности, здесь добавилось и новое: механика Ньютона давала численную оценку гравитационного взаимодействия материальных тел, но не объясняла физику этого процесса. Эйнштейну же удалось описать это посредством искривления массивным телом 4-мерного пространства-времени: тело создаёт вокруг себя возмущение, в результате которого окружающие тела начинают двигаться по геодезическим линиям (примерами таких линий являются линии земной широты и долготы, которые для внутреннего наблюдателя кажутся прямыми линиями, но в реальности немного искривлены). Таким же образом откланяются и лучи света, что искажает видимую картину за массивным объектом. При удачном совпадении положений и масс объектов это приводит к (когда искривление пространства-времени выступает в роли огромной линзы, делающей источник далёкого света намного ярче). Если же параметры совпадают не идеально – это может приводить к образованию «креста Эйнштейна» или «круга Эйнштейна» на астрономических снимках далёких объектов.

Среди предсказаний теории также было гравитационное замедление времени, (которое при приближении к массивному объекту действовало на тело точно также, как и замедление времени в следствии ускорения), гравитационное (когда луч света, испущенный массивным телом, уходит в красную часть спектра в следствии потери им энергии на работу выхода из «гравитационного колодца»), а также гравитационные волны (возмущение пространства-времени, которое производит любое тело имеющее массу в процессе своего движения).

Статус теории

Первое подтверждение общей теории относительности было получено самим Эйнштейном в том же 1915 году, когда она и была опубликована: теория с абсолютной точностью описывала смещение перигелия Меркурия, которое до этого никак не могли объяснить при помощи ньютоновской механики. С того момента было открыто множество других явлений, которые предсказывались теорией, но на момент её публикации были слишком слабы чтобы их можно было засечь. Последним таким открытием на данный момент стало открытие гравитационных волн 14 сентября 2015 года.

Специальная теория относительности (СТО) или частная теория относительности – это теория Альберта Эйнштейна, опубликованная в 1905 году в работе «К электродинамике движущихся тел» (Albert Einstein - Zur Elektrodynamik bewegter Körper. Annalen der Physik, IV. Folge 17. Seite 891-921. Juni 1905).

Она объясняла движение между разными инерциальными системами отсчёта или движение тел, двигающихся в отношении друг друга с неизменной скоростью. В этом случае ни один из объектов не должен приниматься за систему отсчёта, а рассматривать их надо относительно друг друга. СТО предусматривает только 1 случай, когда 2 тела не изменяют направление движения и двигаются равномерно.

Законы СТО перестают действовать, когда одно из тел изменяет траекторию движения или повышает скорость. Здесь имеет место общая теория относительности (ОТО), дающая общее толкование движения объектов.

Два постулата, на которых строится теория относительности:

  1. Принцип относительности - Согласно ему, во всех существующих системах отсчета, которые двигаются в отношении друг друга с неизменяющейся скоростью и не меняют направление, действуют одни и те же законы.
  2. Принцип скорости света - Скорость света одинакова для всех наблюдателей и не имеет зависимость от скорости их движения. Это высшая скорость, и ничто в природе не имеет большую скорость. Световая скорость равна 3*10^8 м/с.

Альберт Эйнштейн за основу брал экспериментальные, а не теоретические данные. Это явилось одной из составляющих его успеха. Новые экспериментальные данные послужили базой для создания новой теории.

Физики с середины XIX века занимались поиском новой загадочной среды, названной эфиром. Полагалось, что эфир может проходить через все объекты, но не участвует в их движении. Согласно убеждениям об эфире, изменяя скорость зрителя в отношении эфира, меняется и скорость света.

Эйнштейн, доверяя экспериментам, отверг понятие новой среды эфира и допустил, что скорость света всегда является постоянной и не зависит от любых обстоятельств, таких как скорость самого человека.

Временные промежутки, расстояния, и их однородность

Специальная теория относительности связывает временные промежутки и пространство. В Материальной вселенной существует 3 известных в пространстве: вправо и влево, вперед и назад, вверх и вниз. Если добавить к ним другое измерение, названное временным, то это составит основу пространственно-временного континуума.

Если Вы осуществляете движение с малой скоростью, ваши наблюдения не будут сходиться с людьми, которые двигаются быстрее.

Позже эксперименты подтвердили, что пространство, так же как и время, не может восприниматься одинаково: от скорости движения объектов зависит наше восприятие.

Соединение энергии с массой

Эйнштейн вывел формулу, которая соединила в себе энергию с массой. Эта формула получила широкое распространение в физике, и она знакома каждому ученику: E=m*c² , в которой E-энергия; m- масса тела, c-скорость распространения света.

Масса тела возрастает пропорционально увеличению скорости света. Если достигнуть скорости света, масса и энергия тела становятся безразмерными.

Увеличивая массу объекта, становится сложнее достичь увеличения его скорости, т. е для тела с бесконечно огромной материальной массой необходима бесконечная энергия. Но на деле этого достичь нереально.

Теория Эйнштейна объединила два отдельных положения: положение массы и положение энергии в один общий закон. Это сделало возможным преобразование энергии в материальную массу и наоборот.

Сто лет назад, в 1915 году, молодой швейцарский учёный, который на тот момент уже сделал революционные открытия в физике, предложил принципиально новое понимание гравитации.

В 1915 году Эйнштейн опубликовал общую теорию относительности , которая характеризует гравитацию как основное свойство пространства-времени. Он представил серию уравнений, описывающих влияние кривизны пространства-времени на энергию и движение присутствующей в нём материи и излучения.

Сто лет спустя общая теория относительности (ОТО) стала основой для построения современной науки, она выдержала все тесты, с которыми на неё набросились учёные.

Но до недавнего времени было невозможно проводить эксперименты в экстремальных условиях, чтобы проверить устойчивость теории.

Удивительно, насколько сильной показала себя теория относительности за 100 лет. Мы всё ещё пользуемся тем, что написал Эйнштейн!

Клиффорд Уилл, физик-теоретик, Флоридский университет

Теперь у учёных есть технология, с помощью которой можно искать физику за пределами ОТО.

Новый взгляд на гравитацию

Общая теория относительности описывает гравитацию не как силу (так она предстаёт в ньютоновской физике), а как искривление пространства-времени за счёт массы объектов. Земля вращается вокруг Солнца не потому, что звезда её притягивает, а потому, что Солнце деформирует пространство-время. Если на растянутое одеяло положить тяжёлый шар для боулинга, оделяло изменит форму - гравитация влияет на пространство примерно так же.

Теория Эйнштейна предсказала несколько безумных открытий. Например, возможность существования чёрных дыр, которые искривляют пространство-время до такой степени, что ничего не может вырваться изнутри, даже свет. На основе теории были найдены доказательства общепринятому сегодня мнению, что Вселенная расширяется и ускоряется.

Общая теория относительности была подтверждена многочисленными наблюдениями . Сам Эйнштейн использовал ОТО, чтобы рассчитать орбиту Меркурия, чьё движение не может быть описано законами Ньютона. Эйнштейн предсказал существование объектов настолько массивных, что они искривляют свет. Это явление гравитационного линзирования, с которым часто сталкиваются астрономы. Например, поиск экзопланет основан на эффекте едва заметных изменений в излучении, искривлённом гравитационным полем звезды, вокруг которой вращается планета.

Проверка теории Эйнштейна

Общая теория относительности хорошо работает для гравитации обычной силы, как показывают опыты, проведённые на Земле, и наблюдения за планетами Солнечной системы. Но её никогда не проверяли в условиях экстремально сильного воздействия полей в пространствах, лежащих на границах физики.

Наиболее перспективный способ тестирования теории в таких условиях - наблюдение за изменениями в пространстве-времени, которые называются гравитационными волнами . Они появляются как итог крупных событий, при слиянии двух массивных тел, таких как чёрные дыры, или особенно плотных объектов - нейтронных звёзд.

Космический фейерверк такого масштаба отразится на пространстве-времени только мельчайшей рябью. Например, если бы две чёрные дыры столкнулись и слились где-то в нашей Галактике, гравитационные волны могли бы растянуть и сжать расстояние между объектами, находящимися на Земле в метре друг от друга, на одну тысячную диаметра атомного ядра.

Появились эксперименты, которые могут зафиксировать изменения пространства-времени вследствие таких событий.

Есть неплохой шанс зафиксировать гравитационные волны в ближайшие два года.

Клиффорд Уилл

Лазерно-интерферометрическая обсерватория гравитационных волн (LIGO) с обсерваториями в окрестностях Ричленда (Вашингтон) и Ливингстона (Луизиана) использует лазер для определения мельчайших искажений в двойных Г-образных детекторах. Когда рябь пространства-времени проходит через детекторы, она растягивает и сжимает пространство, вследствие чего детектор изменяет размеры. А LIGO может их измерить.

LIGO начала серию запусков в 2002 году, но не достигла результата. В 2010-м была проведена работа по улучшению, и преемник организации, обсерватория Advanced LIGO, снова должна заработать в этом году. Многие из запланированных экспериментов нацелены на поиск гравитационных волн.

Ещё один способ протестировать теорию относительности - посмотреть на свойства гравитационных волн. Например, они могут быть поляризованы, как свет, прошедший через поляризационные очки. Теория относительности предсказывает особенности такого эффекта, и любые отклонения от расчётов могут стать поводом усомниться в теории.

Единая теория

Клиффорд Уилл считает, что открытие гравитационных волн только укрепит теорию Эйнштейна:

Думаю, мы должны продолжать поиск доказательств общей теории относительности, чтобы быть уверенными в её правоте.

А зачем вообще нужны эти эксперименты?

Одна из важнейших и труднодостижимых задач современной физики - поиск теории, которая свяжет воедино исследования Эйнштейна, то есть науку о макромире, и квантовую механику , реальность мельчайших объектов.

Успехи этого направления, квантовой гравитации , могут потребовать внести изменения в общую теорию относительности. Возможно, что эксперименты в области квантовой гравитации потребуют столько энергии, что их будет невозможно провести. «Но кто знает, - говорит Уилл, - может, в квантовой вселенной существует эффект, незначительный, но доступный для поиска».

СТО, ТОЭ - под этими аббревиатурами скрывается знакомый практически всем термин "теория относительности". Простым языком можно объяснить все, даже высказывание гения, так что не отчаивайтесь, если не помните школьный курс физики, ведь на самом деле все гораздо проще, чем кажется.

Зарождение теории

Итак, начнем курс "Теория относительности для чайников". Альберт Эйнштейн опубликовал свою работу в 1905 году, и она вызвала резонанс среди ученых. Эта теория практически полностью перекрывала многие пробелы и нестыковки в физике прошлого века, но и, ко всему прочему, перевернула представление о пространстве и времени. Во многие утверждения Эйнштейна современникам было сложно поверить, но эксперименты и исследования только подтверждали слова великого ученого.

Теория относительности Эйнштейна простым языком объясняла то, над чем люди бились столетиями. Ее можно назвать основой всей современной физики. Однако прежде чем продолжить разговор о теории относительности, следует разъяснить вопрос о терминах. Наверняка многие, читая научно-популярные статьи, сталкивались с двумя аббревиатурами: СТО и ОТО. На самом деле они подразумевают несколько разные понятия. Первая - это специальная теория относительности, а вторая расшифровывается как "общая теория относительности".

Просто о сложном

СТО - это более старая теория, которая потом стала частью ОТО. В ней могут быть рассмотрены только физические процессы для объектов, движущихся с равномерной скоростью. Общая же теория может описать, что происходит с ускоряющимися объектами, а также объяснить, почему существуют частицы гравитонов и гравитация.

Если нужно описать движение и а также отношения пространства и времени при приближении к скорости света - это сможет сделать специальная теория относительности. Простыми словами можно объяснить так: к примеру, друзья из будущего подарили вам космолет, который может летать на высокой скорости. На носу космического корабля стоит пушка, способная расстрелять фотонами все, что попадется впереди.

Когда производится выстрел, то относительно корабля эти частицы летят со скоростью света, но, по логике, неподвижный наблюдатель должен увидеть сумму двух скоростей (самих фотонов и корабля). Но ничего подобного. Наблюдатель увидит фотоны, движущиеся со скоростью 300000 м/с, будто скорость корабля была нулевой.

Все дело в том, что как бы быстро ни двигался объект, скорость света для него является неизменной величиной.

Это утверждение является основной поразительных логических выводов вроде замедления и искажения времени, зависящих от массы и скорости объекта. На этом основаны сюжеты многих научно-фантастических фильмов и сериалов.

Общая теория относительности

Простым языком можно объяснить и более объемную ОТО. Для начала следует принять во внимание тот факт, что наше пространство четырехмерное. Время и пространство объединяются в таком "предмете", как "пространственно-временной континуум". В нашем пространстве имеются четыре оси координат: х, у, z и t.

Но люди не могут воспринимать непосредственно четыре измерения, так же, как гипотетический плоский человек, живущих в двухмерном мире, не в состоянии посмотреть вверх. По сути, наш мир является только проекцией четырехмерного пространства в трехмерное.

Интересным фактом является то, что, согласно общей теории относительности, тела не меняются при движении. Объекты четырехмерного мира на самом деле всегда неизменны, и при движении изменяются только их проекции, что мы и воспринимаем как искажение времени, сокращение или увеличение размеров и прочее.

Эксперимент с лифтом

О теории относительности простым языком можно рассказать с помощью небольшого мысленного эксперимента. Представьте, что вы в лифте. Кабинка пришла в движение, и вы оказались в состоянии невесомости. Что произошло? Причины может быть две: либо лифт находится в космосе, либо пребывает в свободном падении под действием гравитации планеты. Самое интересное состоит в том, что выяснить причину невесомости нельзя, если нет возможности выглянуть из кабинки лифта, то есть оба процесса выглядят одинаково.

Возможно, проведя похожий мысленный эксперимент, Альберт Эйнштейн пришел к выводу, что если эти две ситуации неотличимы друг от друга, значит, на самом деле тело под воздействием гравитации не ускоряется, это равномерное движение, которое искривляется под воздействием массивного тела (в данном случае планеты). Таким образом, ускоренное движение - это лишь проекция равномерного движения в трехмерное пространство.

Наглядный пример

Еще один хороший пример на тему "Теория относительности для чайников". Он не совсем корректен, зато очень прост и нагляден. Если на натянутую ткань положить какой-либо объект, он образует под собой "прогиб", "воронку". Все меньшие тела вынуждены будут искажать свою траекторию согласно новому изгибу пространства, а если у тела немного энергии, оно вообще может не преодолеть этой воронки. Однако с точки зрения самого движущегося объекта, траектория остается прямой, они не почувствуют изгиба пространства.

Гравитация "понижена в звании"

С появлением общей теории относительности гравитация перестала быть силой и теперь довольствуется положением простого следствия искривления времени и пространства. ОТО может показаться фантастичной, однако является рабочей версией и подтверждается экспериментами.

Множество, казалось бы, невероятных в нашем мире вещей может объяснить теория относительности. Простым языком такие вещи называют следствиями ОТО. Например, лучи света, пролетающие на близком расстоянии от массивных тел, искривляются. Более того, многие объекты из далекого космоса скрыты друг за другом, но из-за того, что лучи света огибают другие тела, нашему взору (точнее, взору телескопа) доступны, казалось бы, невидимые объекты. Это ведь все равно, что смотреть сквозь стены.

Чем больше гравитация, тем медленнее на поверхности объекта течет время. Это касается не только массивных тел вроде нейтронных звезд или черных дыр. Эффект замедления времени можно наблюдать даже на Земле. К примеру, приборы для спутниковой навигации снабжены точнейшими атомными часами. Они находятся на орбите нашей планеты, и время там тикает чуть быстрее. Сотые доли секунды через сутки сложатся в цифру, которая даст до 10 км погрешности в расчетах маршрута на Земле. Рассчитать эту погрешность позволяет именно теория относительности.

Простым языком можно выразиться так: ОТО лежит в основе многих современных технологий, и благодаря Эйнштейну мы легко можем найти в незнакомом районе пиццерию и библиотеку.

материал из книги Стивена Хокинга и Леонарда Млодинова "Кратчайшая история времени"

Относительность

Фундаментальный постулат Эйнштейна, именуемый принципом относительности, гласит, что все законы физики должны быть одинаковыми для всех свободно движущихся наблюдателей независимо от их скорости. Если скорость света постоянная величина, то любой свободно движущийся наблюдатель должен фиксировать одно и то же значение независимо от скорости, с которой он приближается к источнику света или удаляется от него.

Требование, чтобы все наблюдатели сошлись в оценке скорости света, вынуждает изменить концепцию времени. Согласно теории относительности наблюдатель, едущий на поезде, и тот, что стоит на платформе, разойдутся в оценке расстояния, пройденного светом. А поскольку скорость есть расстояние, деленное на время, единственный способ для наблюдателей прийти к согласию относительно скорости света – это разойтись также и в оценке времени. Другими словами, теория относительности положила конец идее абсолютного времени! Оказалось, что каждый наблюдатель должен иметь свою собственную меру времени и что идентичные часы у разных наблюдателей не обязательно будут показывать одно и то же время.

Говоря, что пространство имеет три измерения, мы подразумеваем, что положение точки в нем можно передать с помощью трех чисел – координат. Если мы введем в наше описание время, то получим четырехмерное пространство-время.

Другое известное следствие теории относительности – эквивалентность массы и энергии, выраженная знаменитым уравнением Эйнштейна Е = mс 2 (где Е– энергия, m – масса тела, с – скорость света). Ввиду эквивалентности энергии и массы кинетическая энергия, которой материальный объект обладает в силу своего движения, увеличивает его массу. Иными словами, объект становится труднее разгонять.

Этот эффект существенен только для тел, которые перемещаются со скоростью, близкой к скорости света. Например, при скорости, равной 10% от скорости света, масса тела будет всего на 0,5% больше, чем в состоянии покоя, а вот при скорости, составляющей 90% от скорости света, масса уже более чем вдвое превысит нормальную. По мере приближения к скорости света масса тела увеличивается все быстрее, так что для его ускорения требуется все больше энергии. Согласно теории относительности объект никогда не сможет достичь скорости света, поскольку в данном случае его масса стала бы бесконечной, а в силу эквивалентности массы и энергии для этого потребовалась бы бесконечная энергия. Вот почему теория относительности навсегда обрекает любое обычное тело двигаться со скоростью, меньшей скорости света. Только свет или другие волны, не имеющие собственной массы, способны двигаться со скоростью света.

Искривленное пространство

Общая теория относительности Эйнштейна основана на революционном предположении, что гравитация не обычная сила, а следствие того, что пространство-время не является плоским, как принято было думать раньше. В общей теории относительности пространство-время изогнуто или искривлено помещенными в него массой и энергией. Тела, подобные Земле, движутся по искривленным орбитам не под действием силы, именуемой гравитацией.

Так как геодезическая линия – кратчайшая линия между двумя аэропортами, штурманы ведут самолеты именно по таким маршрутам. Например, вы могли бы, следуя показаниям компаса, пролететь 5966 километров от Нью-Йорка до Мадрида почти строго на восток вдоль географической параллели. Но вам придется покрыть всего 5802 километра, если вы полетите по большому кругу, сперва на северо-восток, а затем постепенно поворачивая к востоку и далее к юго-востоку. Вид этих двух маршрутов на карте, где земная поверхность искажена (представлена плоской), обманчив. Двигаясь «прямо» на восток от одной точки к другой по поверхности земного шара, вы в действительности перемещаетесь не по прямой линии, точнее сказать, не по самой короткой, геодезической линии.

Если траекторию космического корабля, который движется в космосе по прямой линии, спроецировать на двумерную поверхность Земли, окажется, что она искривлена.

Согласно общей теории относительности гравитационные поля должны искривлять свет. Например, теория предсказывает, что вблизи Солнца лучи света должны слегка изгибаться в его сторону под воздействием массы светила. Значит, свет далекой звезды, случись ему пройти рядом с Солнцем, отклонится на небольшой угол, из-за чего наблюдатель на Земле увидит звезду не совсем там, где она в действительности располагается.

Напомним, что согласно основному постулату специальной теории относительности все физические законы одинаковы для всех свободно двигающихся наблюдателей, независимо от их скорости. Грубо говоря, принцип эквивалентности распространяет это правило и на тех наблюдателей, которые движутся не свободно, а под действием гравитационного поля.

В достаточно малых областях пространства невозможно судить о том, пребываете ли вы в состоянии покоя в гравитационном поле или движетесь с постоянным ускорением в пустом пространстве.

Представьте себе, что вы находитесь в лифте посреди пустого пространства. Нет никакой гравитации, никакого «верха» и «низа». Вы плывете свободно. Затем лифт начинает двигаться с постоянным ускорением. Вы внезапно ощущаете вес. То есть вас прижимает к одной из стенок лифта, которая теперь воспринимается как пол. Если вы возьмете яблоко и отпустите его, оно упадет на пол. Фактически теперь, когда вы движетесь с ускорением, внутри лифта все будет происходить в точности так же, как если бы подъемник вообще не двигался, а покоился бы в однородном гравитационном поле. Эйнштейн понял, что, подобно тому как, находясь в вагоне по-езда, вы не можете сказать, стоит он или равномерно движется, так и, пребывая внутри лифта, вы не в состоянии определить, перемещается ли он с постоянным ускорением или находится в однородном гравитационном поле. Результатом этого понимания стал принцип эквивалентности.

Принцип эквивалентности и приведенный пример его проявления будут справедливы лишь в том случае, если инертная масса (входящая во второй закон Ньютона, который определяет, ка-кое ускорение придает телу приложенная к нему сила) и гравитационная масса (входящая в за-кон тяготения Ньютона, который определяет величину гравитационного притяжения) суть одно и то же.

Использование Эйнштейном эквивалентности инертной и гравитационной масс для вывода принципа эквивалентности и, в конечном счете, всей общей теории относительности – это бес-прецедентный в истории человеческой мысли пример упорного и последовательного развития логических заключений.

Замедление времени

Еще одно предсказание общей теории относительности состоит в том, что около массивных тел, таких как Земля, должен замедляться ход времени.

Теперь, познакомившись с принципом эквивалентности, мы можем проследить ход рассуждений Эйнштейна, выполнив другой мысленный эксперимент, который показывает, почему гравитация воздействует на время. Представьте себе ракету, летящую в космосе. Для удобства будем считать, что ее корпус настолько велик, что свету требуется целая секунда, чтобы пройти вдоль него сверху донизу. И наконец, предположим, что в ракете находятся два наблюдателя: один – наверху, у потолка, другой – внизу, на полу, и оба они снабжены одинаковыми часами, ведущими отсчет секунд.

Допустим, что верхний наблюдатель, дождавшись отсчета своих часов, немедленно посылает нижнему световой сигнал. При следующем отсчете он шлет второй сигнал. По нашим условиям понадобится одна секунда, чтобы каждый сигнал достиг нижнего наблюдателя. Поскольку верхний наблюдатель посылает два световых сигнала с интервалом в одну секунду, то и нижний наблюдатель зарегистрирует их с таким же интервалом.

Что изменится, если в этом эксперименте, вместо того чтобы свободно плыть в космосе, ракета будет стоять на Земле, испытывая действие гравитации? Согласно теории Ньютона гравитация никак не повлияет на положение дел: если наблюдатель наверху передаст сигналы с промежутком в секунду, то наблюдатель внизу получит их через тот же интервал. Но принцип эквивалентности предсказывает иное развитие событий. Какое именно, мы сможем понять, если в соответствии с принципом эквивалентности мысленно заменим действие гравитации постоянным ускорением. Это один из примеров того, как Эйнштейн использовал принцип эквивалентности при создании своей новой теории гравитации.

Итак, предположим, что наша ракета ускоряется. (Будем считать, что она ускоряется медленно, так что ее скорость не приближается к скорости света.) Поскольку корпус ракеты движется вверх, первому сигналу понадобится пройти меньшее расстояние, чем прежде (до начала ускорения), и он прибудет к нижнему наблюдателю раньше чем через секунду. Если бы ракета двигалась с постоянной скоростью, то и второй сигнал прибыл бы ровно настолько же раньше, так что интервал между двумя сигналами остался бы равным одной секунде. Но в момент от-правки второго сигнала благодаря ускорению ракета движется быстрее, чем в момент отправки первого, так что второй сигнал пройдет меньшее расстояние, чем первый, и затратит еще меньше времени. Наблюдатель внизу, сверившись со своими часами, зафиксирует, что интервал между сигналами меньше одной секунды, и не согласится с верхним наблюдателем, который утверждает, что посылал сигналы точно через секунду.

В случае с ускоряющейся ракетой этот эффект, вероятно, не должен особенно удивлять. В конце концов, мы только что его объяснили! Но вспомните: принцип эквивалентности говорит, что то же самое имеет место, когда ракета покоится в гравитационном поле. Следовательно, да-же если ракета не ускоряется, а, например, стоит на стартовом столе на поверхности Земли, сигналы, посланные верхним наблюдателем с интервалом в секунду (согласно его часам), будут приходить к нижнему наблюдателю с меньшим интервалом (по его часам). Вот это действительно удивительно!

Гравитация изменяет течение времени. Подобно тому как специальная теория относительности говорит нам, что время идет по-разному для наблюдателей, движущихся друг относительно друга, общая теория относительности объявляет, что ход времени различен для наблюдателей, находящихся в разных гравитационных полях. Согласно общей теории относительности нижний наблюдатель регистрирует более короткий интервал между сигналами, потому что у поверхности Земли время течет медленнее, поскольку здесь сильнее гравитация. Чем сильнее гравитационное поле, тем больше этот эффект.

Наши биологические часы также реагируют на изменения хода времени. Если один из близнецов живет на вершине горы, а другой – у моря, первый будет стареть быстрее второго. В данном случае различие в возрастах будет ничтожным, но оно существенно увеличится, коль скоро один из близнецов отправится в долгое путешествие на космическом корабле, который разгоняется до скорости, близкой к световой. Когда странник возвратится, он будет намного моложе брата, оставшегося на Земле. Этот случай известен как парадокс близнецов, но парадоксом он является только для тех, кто держится за идею абсолютного времени. В теории относительности нет никакого уникального абсолютного времени – для каждого индивидуума имеется своя собственная мера времени, которая зависит от того, где он находится и как движется.

C появлением сверхточных навигационных систем, получающих сигналы от спутников, разность хода часов на различных высотах приобрела практическое значение. Если бы аппаратура игнорировала предсказания общей теории относительности, ошибка в определении местоположения могла бы достигать нескольких километров!

Появление общей теории относительности в корне изменило ситуацию. Пространство и время обрели статус динамических сущностей. Когда перемещаются тела или действуют силы, они вызывают искривление пространства и времени, а структура пространства-времени, в свою очередь, сказывается на движении тел и действии сил. Пространство и время не только влияют на все, что случается во Вселенной, но и сами от всего этого зависят.

Представим себе бесстрашного астронавта, который остается на поверхности коллапсирующей звезды во время катастрофического сжатия. В некоторый момент по его часам, скажем в 11:00, звезда сожмется до критического радиуса, за которым гравитационное поле усиливается настолько, что из него невозможно вырваться. Теперь предположим, что по инструкции астронавт должен каждую секунду по своим часам посылать сигнал космическому кораблю, который находится на орбите на некотором фиксированном расстоянии от центра звезды. Он начинает передавать сигналы в 10:59:58, то есть за две секунды до 11:00. Что зарегистрирует экипаж на борту космического судна?

Ранее, проделав мысленный эксперимент с передачей световых сигналов внутри ракеты, мы убедились, что гравитация замедляет время и чем она сильнее, тем значительнее эффект. Астронавт на поверхности звезды находится в более сильном гравитационном поле, чем его коллеги на орбите, поэтому одна секунда по его часам продлится дольше секунды по часам корабля. Поскольку астронавт вместе с поверхностью движется к центру звезды, действующее на него поле становится все сильнее и сильнее, так что интервалы между его сигналами, принятыми на борту космического корабля, постоянно удлиняются. Это растяжение времени будет очень незначительным до 10:59:59, так что для астронавтов на орбите интервал между сигналами, переданными в 10:59:58 и в 10:59:59, очень ненамного превысит секунду. Но сигнала, отправленного в 11:00, на корабле уже не дождутся.

Все, что произойдет на поверхности звезды между 10:59:59 и 11:00 по часам астронавта, растянется по часам космического корабля на бесконечный период времени. С приближением к 11:00 интервалы между прибытием на орбиту последовательных гребней и впадин испущенных звездой световых волн станут все длиннее; то же случится и с промежутками времени между сигналами астронавта. Поскольку частота излучения определяется числом гребней (или впадин), приходящих за секунду, на космическом корабле будет регистрироваться все более и более низкая частота излучения звезды. Свет звезды станет все больше краснеть и одновременно меркнуть. В конце концов звезда настолько потускнеет, что сделается невидимой для наблюдателей на космическом корабле; все, что останется, – черная дыра в пространстве. Однако действие тяготения звезды на космический корабль сохранится, и он продолжит обращение по орбите.