Меню
Бесплатно
Главная  /  Зачатие  /  Инверсии температурные. Температурная инверсия в атмосфере Причины и механизмы возникновения инверсии

Инверсии температурные. Температурная инверсия в атмосфере Причины и механизмы возникновения инверсии

ТЕМПЕРАТУРНАЯ ИНВЕРСИЯ

ТЕМПЕРАТУРНАЯ ИНВЕРСИЯ , аномальное возрастание ТЕМПЕРАТУРЫ с высотой. Нормально температура воздуха уменьшается с ростом высоты над уровнем земли. Средняя норма понижения - 1 °С на каждые 160 м. При определенных метеоусловиях наблюдается обратная ситуация. В ясную, тихую ночь при антициклоне холодный воздух может скатываться вниз по склонам и собираться в долинах, и температура воздуха будет ниже около дна долины, чем на 100 или 200 м выше. Над холодным слоем там будет более теплый воздух, который, вероятно, образует облако или легкий туман. Температурная инверсия становится наглядной на примере дыма, поднимающегося от костра. Дым будет подниматься вертикально, а затем, когда достигнет «слоя инверсии», изогнется горизонтально Если эта ситуация создается в больших масштабах, пыль и грязь, поднимающиеся в атмосферу, остаются там и, накапливаясь, приводят к серьезному загрязнению.


Научно-технический энциклопедический словарь .

Смотреть что такое "ТЕМПЕРАТУРНАЯ ИНВЕРСИЯ" в других словарях:

    Большой Энциклопедический словарь

    температурная инверсия - Повышение температуры с высотой в некотором слое атмосферы вместо обычного ее понижения. Syn.: инверсия температуры … Словарь по географии

    См. Инверсия температуры. * * * ТЕМПЕРАТУРНАЯ ИНВЕРСИЯ ТЕМПЕРАТУРНАЯ ИНВЕРСИЯ, см. Инверсия температуры (см. ИНВЕРСИЯ ТЕМПЕРАТУРЫ) … Энциклопедический словарь

    температурная инверсия - temperatūros apgrąža statusas T sritis ekologija ir aplinkotyra apibrėžtis Vietinis oro temperatūros didėjimas, kylant aukštyn, tam tikruose atmosferos sluoksniuose. Troposferoje temperatūros apgrąžos sluoksnio storis gali būti 2–3 km,… … Ekologijos terminų aiškinamasis žodynas

    См. Инверсия температуры … Естествознание. Энциклопедический словарь

    Повышение температуры воздуха с высотой в некотором слое тропосферы. Инверсии встречаются в приземном слое воздуха, а также в свободной атмосфере, особенно в нижних 2 км. Характеристики инверсий включают: выс. нижней границы и вертикальную… … Географическая энциклопедия

Повышение температуры в тропосфере атмосферы с ростом высоты характеризуется как температурная инверсия (рис. 11.1, в). В этом случае атмосфера оказывается весьма устойчивой. Наличие инверсии в значительной степени замедляет вертикальное перемещение загрязняющих веществ и, как следствие, увеличивает их концентрацию в приземном слое.

Наиболее часто наблюдается инверсия, возникающая при опускании слоя воздуха в воздушную массу с более высоким давлением, либо при радиационной потере тепла земной поверхностью в ночное время. Первый тип инверсии обычно называют инверсией оседания . Инверсионный слой в этом случае обычно располагается на некотором расстоянии от земной поверхности, а формируется инверсия путем адиабатического сжатия и нагревания слоя воздуха в процессе его опускания вниз в область центра высокого давления.

Из уравнения (11.5) получаем:

Значение удельной изобарной теплоемкости С р для воздуха не значительно изменяется от температуры в достаточно большом температурном диапазоне. Однако в связи с изменением барометрического давления плотность на верхней границе слоя инверсии меньше, чем у его основания, т. е.

. (11.11)

Это означает, что верхняя граница слоя нагревается быстрее, чем нижняя. Если опускание продолжается в течение длительного времени, в слое будет создаваться положительный градиент температуры. Таким образом, опускающаяся воздушная масса является как бы гигантской крышкой для атмосферы, расположенной ниже слоя инверсии.

Слои инверсии оседания обычно оказываются выше источников выбросов и, таким образом, не оказывают существенного влияния на явления короткопериодного загрязнения атмосферного воздуха. Однако такая инверсия может просуществовать несколько дней, что сказывается на долговременном накоплении загрязняющих веществ. Случаи загрязнения с опасными последствиями для здоровья людей, наблюдавшиеся в городских районах в прошлом, часто были связаны с инверсиями оседания.

Рассмотрим причины, приводящие к возникновению радиационной инверсии . В этом случае слои атмосферы, расположенные над поверхностью Земли, в течение дня получают тепло за счет теплопроводности, конвекции и излучения от земной поверхности и в итоге нагреваются. В результате температурный профиль нижних слоев атмосферы обычно характеризуется отрицательным температурным градиентом. Если затем следует ясная ночь, то земная поверхность излучает тепло и быстро остывает. Слои воздуха, прилегающие к земной поверхности, охлаждаются до температуры расположенных выше слоев. В результате дневной температурный профиль преобразуется в профиль обратного знака, и слои атмосферы, прилегающие к земной поверхности, прикрываются устойчивым инверсионным слоем. Этот тип инверсии наблюдается в ранние часы и характерен для периодов ясного неба и безветренной погоды. Инверсионный слой разрушается восходящими потоками теплого воздуха, возникающими при нагревании поверхности земли лучами утреннего солнца.

Радиационная инверсия играет важную роль в загрязнении атмосферы, так как в этом случае инверсионный слой располагается внутри слоя, который содержит источники загрязнения (в отличие от инверсии оседания). Кроме того, радиационная инверсия наиболее часто происходит в условиях безоблачных и безветренных ночей, когда мала вероятность очищения воздуха от загрязнения осадками или боковыми ветрами.

Интенсивность и продолжительность инверсии зависят от сезона. Осенью и зимой, как правило, имеют место продолжительные инверсии, их число велико. На инверсии оказывает влияние и топография местности. Например, холодный воздух, скопившийся ночью в межгорной котловине, может быть «заперт» там теплым воздухом, оказавшимся над ним.

Возможно и другие типы локальных инверсий, например инверсии, связанные с морским бризом при прохождении теплого воздушного фронта над большим континентальным участком суши. Прохождение холодного фронта, перед которым расположена область теплого воздуха, также приводит к инверсии.

Инверсии – обычное явление для многих районов. Например, на западном побережье США они наблюдаются в течение почти 340 дней в году.

Степень устойчивости атмосферы можно определить по величине градиента «потенциальной» температуры:

. (11.12)

где
– градиент температуры, наблюдаемый в окружающем воздухе.

Отрицательное значение градиента «потенциальной» температуры (Г пот < 0) свидетельствует о сверхадиабатическом характере профиля температуры и неустойчивых условиях в атмосфере. В случае, когдаГ пот > 0, атмосфера устойчива. В случае, если градиент «потенциальной» температуры приближается к нулю (Г пот  0), атмосфера характеризуется как безразличная.

Кроме рассмотренных случаев температурной инверсии, которые носят локальный характер, в атмосфере Земли наблюдаются две инверсионные зоны глобального характера. Первая зона глобальной инверсии от поверхности Земли начинается с нижней границы тропопаузы (11 км для стандартной атмосферы) и заканчивается на верхней границы стратопаузы (примерно 50 км). Эта инверсионная зона препятствует распространению примесей, образовавшихся в тропосфере или выделяющихся с поверхности Земли, в другие области атмосферы. Вторая зона глобальной инверсии, расположенная в термосфере, в определенной степени препятствует рассеянию атмосферы в космическое пространство.

Рассмотрим на примере порядок определения градиента «потенциальной» температуры. Температура у поверхности Земли на высоте 1,6 м составляет –10 °С, на высоте 1800 м – –50 °С, –12 °С, –22 °С.

Целью расчета является оценка состояния атмосферы по величине градиента «потенциальной» температуры.

Для расчета градиента «потенциальной» температуры воспользуемся уравнением (11.12)

Здесь Г = 0,00645 град./м – стандартный, или нормальный адиабатический вертикальный, температурный градиент.

Проанализируем рассчитанные значения градиента «потенциальной» температуры. Характер изменения температуры для рассматриваемых случаев состояния атмосферы представлен на рис. 11.2.

Г пот 1 < 0 свидетельствует о сверхадиабатическом характере профиля температуры и неустойчивых условиях в атмосфере.

Г пот 2 > 0 – атмосфера устойчива.

Г пот 3 ≈ 0 – атмосфера характеризуется как безразличная.

В самом общем смысле инверсия – это нарушение привычного хода вещей или порядка. Инверсия температуры – это повышение температуры воздуха с высотой в некотором слое атмосферы вместо обычного понижения.

Известно, что плавное убывание температур с высотой следует считать только общим свойством тропосферы. Очень часто наблюдается такая стратификация воздуха, при которой в направлении вверх температура или не понижается, или даже повышается. Возрастание температуры с высотой над земной поверхностью называется его инверсией.

По мощности слоя воздуха, в котором наблюдается повышение температуры, различают а) инверсии приземные , захватывающие несколько метров, и б) инверсии свободной атмосферы , простирающиеся до трех километров.

Приращение температуры (или величина инверсии) может достигать 10 0 С и более. При этом атмосфера оказывается как бы расслоенной: одна масса воздуха от другой массы отделяется слоем инверсии.

По происхождению приземные инверсии разделяются на радиационные, адвективные, орографические и снежные.

Радиационные инверсии возникают летом при тихой и безоблачной погоде. После захода Солнца поверхность, а от нее и нижние слои воздуха охлаждаются, а лежащие выше еще сохраняют дневной запас тепла. Мощность таких инверсий колеблется от 10 до 300 м в зависимости от погоды. Радиационные инверсии бывают над ледяными поверхностями в любое время года при потере ими тепла лучеиспусканием.

Орографические инверсии формируются в пересеченной местности при безветренной погоде, когда холодный воздух стекает вниз, а на холмах и склонах гор удерживается более теплый воздух.

Адвективные инверсии бывают при движении теплого воздуха в холодную местность. Причем нижние слои воздуха охлаждаются от соприкосновения с холодной поверхностью, а верхние на время остаются теплыми.

Снежные (весенние) инверсии наблюдаются ранней весной над снежными поверхностями. Они вызываются затратой воздухом большого количества тепла на таяние снега.

В свободной атмосфере наиболее распространены антициклональные инверсии сжатия и циклонические фронтальные инверсии .

Антициклональные инверсии сжатия образуются в антициклонах зимой и наблюдаются на высоте 1-2 км. Температура опускающегося воздуха в средней тропосфере повышается, но близ земной поверхности, где начинается горизонтальное растекание воздуха, она повышается. Это явление наблюдается на огромных территориях Арктики, Антарктики, Восточной Сибири и т.д.

Циклонические фронтальные инверсии образуются в циклонах вследствие натекания теплого воздуха на холодный.

Подобно тому, как в почве или в воде нагревание и охлаждение передаются от поверхности в глубину, так и в воздухе нагревание и охлаждение передаются из нижнего слоя в более высокие слои. Следовательно, суточные колебания температуры должны наблюдаться не только у земной поверхности, но и в высоких слоях атмосферы. При этом, подобно тому как в почве и в воде суточное колебание температуры убывает и запаздывает с глубиной, в атмосфере оно должно убывать и запаздывать с высотой.

Нерадиационная передача тепла в атмосфере происходит, как и в воде, преимущественно путем турбулентной теплопроводности, т. е. при перемешивании воздуха. Но воздух более подвижен, чем вода, и турбулентная теплопроводность в нем значительно больше. В результате суточные колебания температуры в атмосфере распространяются на более мощный слой, чем суточные колебания в океане.

На высоте 300 м над сушей амплитуда суточного хода температуры около 50% амплитуды у земной поверхности, а крайние значения температуры наступают на 1,5--2 часа позже. На высоте 1 км суточная амплитуда температуры над сушей 1--2°, на высоте 2--5 км 0,5--1°, а дневной максимум смещается на вечер. Над морем суточная амплитуда температуры несколько растет с высотой в нижних километрах, но все же остается малой.

Небольшие суточные колебания температуры обнаруживаются даже в верхней тропосфере и в нижней стратосфере. Но там они определяются уже процессами поглощения и излучения радиации воздухом, а не влияниями земной поверхности.

В горах, где влияние подстилающей поверхности больше, чем на соответствующих высотах в свободной атмосфере, суточная амплитуда убывает с высотой медленнее. На отдельных горных вершинах, на высотах 3000 м и больше, суточная амплитуда еще может равняться 3--4°. На высоких обширных плато суточная амплитуда температуры воздуха того же порядка, что и в низинах: поглощенная радиация и эффективное излучение здесь велики, так же как и поверхность соприкосновения воздуха с почвой. Суточная амплитуда температуры воздуха на станции Мургаб на Памире в среднем годовом 15,5°, тогда как в Ташкенте 12°.

Инверсии температуры

В предыдущих параграфах мы неоднократно упоминали об инверсиях температуры. Теперь остановимся на них несколько подробнее, поскольку с ними связаны важные особенности в состоянии атмосферы.

Падение температуры с высотой можно считать нормальным положением вещей для тропосферы, а инверсии температуры -- отклонениями от нормального состояния. Правда, инверсии температуры в тропосфере -- частое, почти повседневное явление. Но они захватывают воздушные слои достаточно тонкие в сравнении со всей толщей тропосферы.

Инверсию температуры можно характеризовать высотой, на которой она наблюдается, толщиной слоя, в котором имеется повышение температуры с высотой, и разностью температур на верхней и нижней границах инверсионного слоя -- скачком температуры. В качестве переходного случая между нормальным падением температуры с высотой и инверсией наблюдается еще явление вертикальной изотермии, когда температура в некотором слое с высотой не меняется.

По высоте все тропосферные инверсии можно разделить на инверсии приземные и инверсии в свободной атмосфере.

Приземная инверсия начинается от самой подстилающей поверхности (почвы, снега или льда). Над открытой водой такие инверсии наблюдаются редко и не так значительны. У подстилающей поверхности температура самая низкая; с высотой она растет, причем этот рост может распространяться на слой в несколько десятков и даже сотен метров. Затем инверсия сменяется нормальным падением температуры с высотой.

Инверсия в свободной атмосфере наблюдается в некотором слое воздуха, лежащем на той или иной высоте над земной поверхностью (рис.5.20). Основание инверсии может находиться на любом уровне в тропосфере; однако наиболее часты инверсии в пределах нижних 2 км (если не говорить об инверсиях на тропопаузе, собственно уже не тропосферных). Толщина инверсионного слоя также может быть самой различной -- от немногих десятков до многих сотен метров. Наконец, скачок температуры на инверсии, т. е. разность температур на верхней и нижней границах инверсионного слоя, может колебаться от 1° и меньше до 10--15° и больше.

Заморозки

Важное в практическом отношении явление заморозков связано как с суточным ходом температуры, так и с непериодическими ее понижениями, причем обе эти причины обычно действуют совместно.

Заморозками называют понижения температуры воздуха ночью до нуля градусов и ниже в то время, когда средние суточные температуры уже держатся выше нуля, т. е. весной и осенью.

Весенние и осенние заморозки могут иметь самые неблагоприятные последствия для садовых и огородных культур. При этом необязательно, чтобы температура опускалась ниже нуля в метеорологической будке. Здесь, на высоте 2 м, она может остаться несколько выше нуля; но в самом нижнем, при почвенном слое воздуха она в это же время падает до нуля и ниже, и огородные или ягодные культуры повреждаются. Бывает и так, что температура воздуха даже и на небольшой высоте над почвой остается выше нуля, но сама почва или растения на ней охлаждаются путем излучения до отрицательной температуры и на них появляется иней. Это явление называется заморозком на почве и также может погубить молодые растения.

Заморозки чаще всего бывают, когда в данный район приходит достаточно холодная воздушная масса, например арктического воздуха. Температура в нижних слоях этой массы днем все-таки выше нуля. Ночью же температура воздуха падает в суточном ходе ниже нуля, т. е. наблюдается заморозок.

Для заморозка нужна ясная и тихая ночь, когда эффективное излучение с поверхности почвы велико, а турбулентность мала и воздух, охлаждающийся от почвы, не переносится в более высокие слои, а подвергается длительному охлаждению. Такая ясная и тихая погода обычно наблюдается во внутренних частях областей высокого атмосферного давления, антициклонов.

Сильное ночное охлаждение воздуха у земной поверхности приводит к тому, что с высотой температура повышается. Другими словами, при заморозке имеет место приземная инверсия температуры.

Заморозки чаще происходят в низинах, чем в возвышенных местах или на склонах, так как в вогнутых формах рельефа ночное понижение температуры усилено. В низких местах холодный воздух больше застаивается и длительнее охлаждается.

Поэтому заморозок нередко поражает сады, огороды или виноградники в низкой местности, в то время как на склонах холма они остаются неповрежденными.

Последние весенние заморозки наблюдаются в центральных областях Европейской территории СНГ в конце мая -- начале июня, а уже в начале сентября возможны первые осенние заморозки (карты VII, VIII).

В настоящее время разработаны достаточно эффективные средства для защиты садов и огородов от ночных заморозков. Огород или сад укутывается дымовой завесой, которая понижает эффективное излучение и уменьшает ночное падение температуры. Грелками разного рода можно подогревать нижние слои воздуха, накопляющегося в приземном слое. Участки с садовыми или огородными культурами можно закрывать на ночь особой пленкой, расставлять над ними соломенные или пластикатовые навесы, также уменьшающие эффективное излучение с почвы и растений, и т. д. Все такие меры следует принимать, когда уже с вечера температура достаточно низка и, согласно прогнозу погоды, предстоит ясная и тихая ночь.

Падение температуры с высотой можно считать нормальным положением вещей для тропосферы, а инверсии температуры - отклонениями от нормального состояния. Правда, инверсии тем­пературы в тропосфере - частое, почти повседневное явление. Но они захватывают воздушные слои достаточно тонкие в срав­нении со всей толщей тропосферы.

Инверсию температуры можно характеризовать высотой, на которой она наблюдается, толщиной слоя, в котором имеется повышение температуры с высотой, и разностью температур на верхней и нижней границах инверсионного слоя - скачком температуры. В качестве переходного случая между нормальным па­дением температуры с высотой и инверсией наблюдается еще явление вертикальной изотермии,когда температура в некотором слое с высотой не меняется.

По высоте все тропосферные инверсии можно разделить на инверсии приземные и инверсии в свободной атмосфере .

Приземная инверсия начинается от самой подстилающей по­верхности (почвы, снега или льда). Над открытой водой такие инверсии наблюдаются редко и не так значительны. У под­стилающей поверхности температура самая низкая, с высотой она растет, причем этот рост может распространяться на слой в несколько десятков и даже сотен метров. Затем инверсия сменяется нормальным падением температуры с высотой.

Приземные инверсии температуры над поверхностью суши или над ледяным покровом океана по большей части возникают вследствие ночного радиационного охлаждения подстилающей поверхности. Такие инверсии называют радиационными. Нижние слои воздуха охлаждаются от земной поверхности сильнее вышележащих. Поэто­му у самой земной поверхности температура падает всего сильнее и устанавливается при­рост температуры с высотой.

Инверсия в свободной атмосференаблюдается в некотором слое воздуха, лежащем на той или иной высоте над земной по­верхностью (рис. 8). Основание инверсии может находиться на любом уровне в тропосфере, однако наиболее часты инверсии в пределах нижних 2 км. Тол­щина инверсионного слоя также может быть самой различной - от немногих десятков до многих сотен метров. Наконец, скачок температуры на инверсии, т.е. разность температур на верхней и нижней границах инверсионного слоя может колебаться от 1° и меньше до 10-15° и больше.

Случается, что приземная инверсия, простирающаяся до зна­чительной высоты, сливается с вышележащей инверсией в свободной атмосфере. Тогда повышение температуры начинается от самой земной поверхности и продолжается до большой высоты, а скачок температуры оказывается особенно значительным.

Бывает и так, что инверсия непосредственно переходит в вышележащую изотермию. Нередко над тем или иным районом наблюдаются в свободной атмосфере две (или больше) инверсии, разделенные слоями с нормальным убыванием температуры.

Рис.8. Типы распределения температуры с высотой: а - приземная инверсия, б - приземная изотермия, в - инверсия в свободной атмосфере

Инверсии наблюдаются не над отдельными точками земной поверхности. Слой инверсии непрерывно простирается над значительной площадью, особенно в случае инверсий в свободной атмосфере.