Меню
Бесплатно
Главная  /  Общая информация  /  Ядерное оружие России: устройство, принцип действия, первые испытания. Ядерное оружие — миру мир! Какие страны разрешили хранить у себя ядерные бомбы, а кто отказался

Ядерное оружие России: устройство, принцип действия, первые испытания. Ядерное оружие — миру мир! Какие страны разрешили хранить у себя ядерные бомбы, а кто отказался

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство науки и образования Украины

Одесский национальный университет имени И.И. Мечникова

на тему: «Ядерное оружие. Виды ядерного оружия»

студентки II курса 2 группы

Соценко Ирины

Одесса 2014

Введение

1. Ядерное оружие

2. Виды ядерного оружия

3. Принцип действия

4. Поражающие факторы

Список литературы

Введение

Оружие, действие которого основано на использовании ядерной (атомной) энергии, наз. ядерной или атомным оружием. Название "ядерное оружие" означает, что речь идет об оружии, которое основывается на использовании энергии, выделяющейся при преобразованиях атомных ядер. Итак, это название имеет общее, снятое значение. Термоядерная оружие - это оружие, основанное на термоядерных реакциях, т.е. на реакциях сочетания легких атомных ядер при очень высоких температурах. Водородная оружие основывается на термоядерной реакции, в которой участвует тяжелый водород - дейтерий и сверхтяжелой водород - тритий. Атомной оружием обычно называют оружие, содержащее в основном такую атомную взрывчатое вещество, как уран-233, уран-235 или плутоний-239. Однако сейчас основным типом оружия является такая, в которой при взрыве происходят разнообразные ядерные реакции в том или ином соотношении. Поэтому можно считать, что название "ядерное оружие" можно распространить на все виды оружия, в которой взрыв обусловлен ядекнимы реакциями. Во время Второй Мировой войны встал вопрос о возможности использования заранее приготовленных радиоактивных веществ в качестве наступательного оружия, то есть вопрос о так называемой радиологической войны. Основная идея этой войны заключалась в том, что радиоактивное заражение местности, промышленных предприятий и оборудования приведет к тому, что их использование станет либо невозможным, либо очень опасным, причем такое заражения не будет сопровождаться разрушением материальных ценностей. Для большей эффективности боевые средства, используемые как радиоактивные вещества, должны излучать гамма-лучи и иметь период полураспада - несколько недель или месяцев. Радиоактивные изотопы с длинным периодом полураспада излучают лучи различной интенсивности, для того чтобы они могли быть эффективными, их необходимо применять в очень больших количествах. Изотопы с коротким периодом полураспада распадаются слишком быстро и поэтому не могут проявлять своей вредного воздействия в течение долгого времени. Даже если удалось бы подобрать радиоактивный изотоп, что нужные свойства и нетрудную технологию производства, в качестве боевой радиоактивного вещества, решение проблемы производства, обращения и доставки этого изотопа, которому свойственно интенсивное гамма-излучения, с целью представляло бы значительную трудность. Кроме того, возникает проблема хранения запасов радиоактивных веществ: в результате естественного распада будет происходить непрерывная потеря их активности. Положение изменилось в результате разработки ядерных боеприпасов, которые образуют при взрыве большое количество продуктов деления. С открытием ядерного оружия взрывного действия отпала необходимость производить и хранить средства радиологической войны заранее, радиоактивные вещества образуются в результате деления в момент ядерного взрыва. Ядерное оружие по своей поражающим действием значительно превосходит обычные виды оружия. Это объясняется не только тем, что по энергии ядерный взрыв превышает обычный взрыв во много тысяч и миллионов раз, но также и тем, что ядерному оружию в отличие от обычной присущ не один, а несколько поражающих факторов.

1. Ядерное оружие

Я м дерное оружие -- совокупность ядерных боеприпасов, средств их доставки к цели и средств управления. Относится к оружию массового поражения наряду с биологическим ихимическим оружием. Ядерный боеприпас -- оружие взрывного действия, основанное на использовании ядерной энергии, высвобождающейся в результате лавинообразно протекающихцепной ядерной реакции деления тяжёлых ядер и/или термоядерной реакции синтеза лёгких ядер. Впервые ядерное оружие появилось в 1945 г. в авиации в виде ядерных бомб. Проведенное 16 июля 1945 в пустыне Аламогордо (штат Нью-Мексико США) испытание первой атомной бомбы подтвердило практическую возможность создания и последующего промышленного производства атомного оружия. В обоих бомбах, взорванных над японскими городами, были использованы процессы ядерного деления. В бомбе, сброшенной на Хиросиму, - ей было дано кодовое имя "Тонкий" - взрывчатым веществом был уран-235 (присутствует в природном уране в количестве 0,7%), а на Нагасаки была сброшена бомба из плутония (искусственно созданного элемента) - ее назвали "Толстый". Дальнейшее развитие ядерного оружия привело к появлению ее в наземных войсках и на флоте. В основе всех видов ядерного оружия взрывного действия лежат физические принципы, использованные впервые при создании атомных и водородных бомб. Поэтому ознакомление с этими бомбами позволит понять действие и других видов ядерного оружия. Ядерный взрыв осуществляется путем перевода заряда с критическому состоянию в критический, точнее в надкритичное. Вот один из вариантов схемы устройства атомного заряда. К момента взрыва общий заряд в бомбе может быть разделен на две или более частей; величина каждой части меньше критической, что исключает преждевременный взрыв в каждой из них в отдельности. Чтобы осуществить взрыв, нужно соединить все части заряда в одно целое. Сближение частей должно происходить очень быстро, чтобы за счет энергии, выделяющейся в начале ядерной реакции, не успели бы разлететься еще прореагировавших части заряда. От этого зависит количество ядер, разделились в результате цепной ядерной реакции, а следовательно, и мощность взрыва. При сближении масс ядерного заряда цепная реакция начинается не в момент их столкновения, а в момент, когда они еще разделены небольшим промежутком. При медленном сближении масс вследствие перегрева они могут разрушиться и разлететься в разные стороны - бомба разрушится, не взорвавшись. Поэтому необходимо сократить период сближения, переводя большую скорость массам соединяемых элементов. Для соединения частей заряда в бомбе можно использовать действие взрыва обычного взрывчатого вещества. Чтобы увеличить степень использования делящегося, при ядерном взрыве, ее окружают видбивником нейтронов и располагают в оболочку из прочного материала. Другой способ сделать массу критической или сверхкритической: когда тонкую сферическую оболочку из урана или плутония сжать в шар. Для этого вокруг тонкой урановой или плутониевой сферической оболочки размещают обычное взрывчатое вещество, которое в нужный момент взрывается. В результате воздействия газов урановая или плутониевая оболочка сжимается в шар, образуя сверхкритических массу, в которой начинается цепная реакция, которая завершается взрывом материала делится. Энергия взрыва ядерных зарядов (основанные на делении ядер) может быть разной. Их тротиловый эквивалент может колебаться в пределах от 50 т до 200 т. Нижняя граница определяется коэффициентом использования делящегося. Верхняя граница определяется тем, что нельзя бесконечно увеличивать вес отдельных частей заряда, поскольку их масса должна быть меньше критической. ядерный нейтронный оружие взрыв

2. Виды ядерного оружия

1. Атомная бомба

Все слышали, что есть некая критическая масса, которую нужно набрать, чтобы началась цепная ядерная реакция. Вот только для того, чтобы произошел настоящий ядерный взрыв, одной критической массы недостаточно -- реакция прекратится практически мгновенно, до того как успеет выделиться заметная энергия. Для полномасштабного взрыва в несколько килотонн или десятков килотонн нужно одномоментно собрать две-три, а лучше четыре-пять критических масс. Кажется очевидным, что нужно сделать две или несколько деталей из урана или плутония и в требуемый момент соединить их. Справедливости ради надо сказать, что так же думали и физики, когда брались за конструирование ядерной бомбы. Но действительность внесла свои коррективы. Дело в том, что если бы у нас был очень чистый уран-235 или плутоний-239, то можно было бы так и сделать, но ученым пришлось иметь дело с реальными металлами. Обогащая природный уран, можно сделать смесь, содержающую 90% урана-235 и 10% урана-238, попытки избавиться от остатка урана-238 ведут к очень быстрому удорожанию этого материала (его называют высокообогащенным ураном). Плутоний-239, который получают в атомном реакторе из урана238 при делении урана-235, обязательно содержит примесь плутония-240.Изотопы уран235 и плутоний239 называются четно-нечетными, так как ядра их атомов содержат четное число протонов (92 для урана и 94 для плутония) и нечетное число нейтронов (143 и 145 соответственно). Все четно-нечетные ядра тяжелых элементов обладают общим свойством: они редко делятся самопроизвольно (ученые говорят: «спонтанно»), но легко делятся при попадании в ядро нейтрона.Уран-238 и плутоний-240 -- четно-четные. Они, наоборот, практически не делятся нейтронами малых и умеренных энергий, которые вылетают из делящихся ядер, но зато в сотни или десятки тысяч раз чаще делятся спонтанно, образуя нейтронный фон. Этот фон очень сильно затрудняет создание ядерных боеприпасов, потому что вызывает преждевременное начало реакции, до того как встретятся две детали заряда. Из-за этого в подготовленном к взрыву устройстве части критической массы должны быть расположены достаточно далеко друг от друга, а соединяться с большой скоростью.

Пушечная бомба

Тем не менее, бомба, сброшенная на Хиросиму 6 августа 1945 года, была сделана именно по вышеописанной схеме. Две ее детали, мишень и пуля, были изготовлены из высокообогащенного урана. Мишень была цилиндром диаметром 16 см и высотой тоже 16 см. В ее центре было отверстие диаметром 10 см. В соответствии с этим отверстием и была изготовлена пуля. Всего бомба содержала 64 кг уранаМ ишень была окружена оболочкой, внутренний слой которой был изготовлен из карбида вольфрама, наружный -- из стали. Назначение у оболочки было двойным: удержать пулю, когда она воткнется в мишень, и отразить хотя бы часть вылетающих из урана нейтронов обратно. С учетом отражателя нейтронов 64 кг составляли 2,3 критических массы. Как же это выходило, ведь каждый из кусков был субкритическим? Дело в том, что, вынимая из цилиндра среднюю часть, мы уменьшаем его среднюю плотность и значение критической массы повышается. Таким образом, масса этой части может превышать критическую массу для сплошного куска металла. А вот увеличить массу пули таким образом невозможно, ведь она должна быть сплошной.И мишень, и пуля были собраны из кусочков: мишень из нескольких колец малой высоты, а пуля из шести шайб. Причина проста -- заготовки из урана должны были быть небольшими по размеру, ведь при изготовлении (отливке, прессовании) заготовки общее количество урана не должно приближаться к критической массе. Пуля была заключена в тонкостенную оболочку из нержавеющей стали, с крышкой из карбида вольфрама, как у оболочки мишени. Для того чтобы направить пулю в центр мишени, решили использовать ствол обычной зенитной пушки калибра 76,2 мм. Вот почему бомбу такого типа называют иногда бомбой пушечной сборки. Ствол был расточен изнутри до 100 мм, чтобы в него вошел столь необычный снаряд. Длина ствола составляла 180 см. В его зарядную камеру загружался обычный бездымный порох, который выстреливал пулю со скоростью примерно в 300 м/с. А другой конец ствола запрессовали в отверстие в оболочке мишени. У этой конструкции была масса недостатков.Она была чудовищно опасной: после того как порох был загружен в зарядную камеру, любая авария, которая могла его воспламенить, привела бы к взрыву бомбы на полную мощность. Из-за этого зарядка пироксилина происходила уже в воздухе, когда самолет подлетал к цели.При аварии самолета урановые детали могли соединиться и без пороха, просто от сильного удара о землю. Чтобы избежать этого, диаметр пули был на долю миллиметра больше диаметра канала в стволе.Если бы бомба упала в воду, то из-за замедления нейтронов в воде реакция могла бы начаться даже и без соединения частей. Правда, при этом ядерный взрыв маловероятен, но произошел бы тепловой взрыв, с распылением урана на большую территорию и радиоактивным заражением. Длина бомбы такой конструкции превышала два метра, и это фактически непреодолимо. Ведь критическое состояние достигалось, и реакция начиналась, когда до остановки пули было еще добрых полметра!Наконец, эта бомба была очень расточительной: прореагировать в ней успевало меньше 1% урана!Достоинство же у пушечной бомбы было ровно одно: она не могла не сработать. Ее даже не собирались испытывать! А вот плутониевую бомбу американцы должны были испытать: уж слишком нова и сложна была ее конструкция.

2. Водородная бомба

Термоя м дерное ору м жие (оно же водородная бомба ) -- тип ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомовдейтерия), при которой выделяется колоссальное количество энергии.

Имея те же поражающие факторы, что и у ядерного оружия, термоядерное оружие имеет намного бомльшую возможную мощность взрыва (теоретически, она ограничена только количеством имеющихся в наличии компонентов). Следует отметить, что часто упоминаемое утверждение о том, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, касается реакций синтеза, которые используются только совместно с гораздо более «грязными» реакциями деления. Термин «чистое оружие», появившийся в англоязычной литературе, к концу 1970-х годов вышел из употребления. На деле всё зависит от выбранного типа реакции, используемой в том или ином изделии. Так, включение в термоядерный заряд элементов из урана-238 (при этом используемый уран-238 делится под действием быстрых нейтронов и даёт радиоактивные осколки. Сами нейтроны производят наведённую радиоактивность) позволяет намного (до пяти раз) повысить общую мощность взрыва, но и значительно (в 5--10 раз) увеличивает количество радиоактивных осадков.

3. Нейтронное оружие

Разновидность ядерного оружия, у которого увеличена доля энергии взрыва, выделяющаяся в виде нейтронного излучения для поражения живой силы, вооружения противника и радиоактивного заражения местности при ограниченных поражающих воздействиях ударной волны и светового излучения. Из-за быстрого поглощения нейтронов атмосферой малоэффективны нейтронные боеприпасы большой мощности; мощность нейтронных боезарядов обычно не превышает нескольких килотонн тротилового эквивалента и их относят к тактическому ядерному оружию. Нейтронное оружие, как и другие виды ядерного оружия, является неизбирательным оружием массового поражения. Мощный поток нейтронов не задерживается обычной стальной бронёй и намного сильнее проникает сквозь преграды, чем рентгеновское или гамма-излучение, не говоря уже об альфа- и бета- частицах. В частности, 150 мм броневой стали задерживают до 90 % гамма-излучения и лишь 20 % быстрых нейтронов. Считалось, что благодаря этому нейтронное оружие способно поражать живую силу противника на значительном расстоянии от эпицентра взрыва и в бронетехнике, где обеспечивается надёжная защита от поражающих факторов обычного ядерного взрыва. Наиболее сильными защитными свойствами обладают материалы, в состав которых входит водород -- например, вода, парафин, полиэтилен, полипропилен и т. д. По конструктивным и экономическим соображениям защиту часто выполняют из бетона, влажного грунта -- 25--35 см этих материалов ослабляют поток быстрых нейтронов в 10 раз, а 50 см -- до 100 раз, поэтому стационарные фортификационные сооружения обеспечивают надёжную защиту как от обычных, так и от нейтронных ядерных боеприпасов.

3 . Принцип действия

В основу ядерного оружия положены неуправляемые цепная реакция деления тяжелых ядер и реакции термоядерного синтеза. Для осуществления цепной реакции деления используются либо уран-235, либо плутоний-239, либо, в отдельных случаях, уран-233. Уран в природе встречается в виде двух основных изотопов -- уран-235 (0,72 % природного урана) и уран-238 -- всё остальное (99,2745 %). Обычно встречается также примесь из урана-234(0,0055 %), образованная распадом урана-238. Однако, в качестве делящегося вещества можно использовать только уран-235. В уране-238 самостоятельное развитие цепной ядерной реакции невозможно (поэтому он и распространен в природе). Для обеспечения «работоспособности» ядерной бомбы содержание урана-235 должно быть не ниже 80 %. Поэтому при производстве ядерного топлива для повышения доли урана-235 и применяют сложный и крайне затратный процесс обогащения урана. В США степень обогащенности оружейного урана (доля изотопа 235) превышает 93 % и иногда доводится до 97,5 %. Альтернативой процессу обогащения урана служит создание «плутониевой бомбы» на основе изотопа плутоний-239, который для увеличения стабильности физических свойств и улучшения сжимаемости заряда обычно легируется небольшим количеством галлия. Плутоний вырабатывается в ядерных реакторах в процессе длительного облучения урана-238 нейтронами. Аналогично уран-233 получается при облучении нейтронами тория. В США ядерные боеприпасы снаряжаются сплавом 25 илиOraloy, название которого происходит от Oak Ridge (завод по обогащению урана) и alloy (сплав). В состав этого сплава входит 25 % урана-235 и 75 % плутония-239.

4 . Поражающие факторы ядерного взрыва

При наземном ядерном взрыве около 50 % энергии идёт на образование ударной волны и воронки в земле, 30-- 40 % в световое излучение, до 5 % на проникающую радиацию и электромагнитное излучение и до 15 % в радиоактивное заражение местности. При воздушном взрыве нейтронного боеприпаса доли энергии распределяются своеобразно: ударная волна до 10 %, световое излучение 5 -- 8 % и примерно 85 % энергии уходит в проникающую радиацию (нейтронное и гамма-излучения). Ударная волна и световое излучение аналогичны поражающим факторам традиционных взрывчатых веществ, но световое излучение в случае ядерного взрыва значительно мощнее. Ударная волна разрушает строения и технику, травмирует людей и оказывает отбрасывающее действие быстрым перепадом давления и скоростным напором воздуха. Последующие за волной разрежение (падение давления воздуха) и обратный ход воздушных масс в сторону развивающегося ядерного гриба также могут нанести некоторые повреждения. Световое излучение действует только на неэкранированные, то есть ничем не прикрытые от взрыва объекты, может вызвать воспламенение горючих материалов и пожары, а также ожоги и поражение зрения человека и животных. Проникающая радиация оказывает ионизирующее и разрушающее воздействие на молекулы тканей человека, вызывает лучевую болезнь. Особенно большое значение имеет при взрыве нейтронного боеприпаса. От проникающей радиации могут защитить подвалы многоэтажных каменных и железобетонных зданий, подземные убежища с заглублением от 2-х метров (погреб, например или любое укрытие 3-4 класса и выше), некоторой защитой обладает бронированная техника. Радиоактивное заражение -- при воздушном взрыве относительно «чистых» термоядерных зарядов (деление-синтез) этот поражающий фактор сведён к минимуму. И наоборот, в случае взрыва «грязных» вариантов термоядерных зарядов, устроенных по принципу деление-синтез-деление, наземного, заглублённого взрыва, при которых происходит нейтронная активация содержащихся в грунте веществ, а тем более взрыва так называемой «грязной бомбы» может иметь решающее значение. Электромагнитный импульс выводит из строя электрическую и электронную аппаратуру, нарушает радиосвязь. В зависимости от типа заряда и условий взрыва энергия взрыва распределяется по-разному. Например, при взрыве обычного ядерного заряда без повышенного выхода нейтронного излучения или радиоактивного загрязнения может быть следующее соотношение долей энергетического выхода на различных высотах.

Выводы

Накопление запасов ядерного оружия достигло ужасающей величины: в течение Второй Мировой войны всеми странами, которые принимали в ней участие, было потрачено около 5 млн. т обычного взрывчатого вещества, - накопленные же сейчас на нашей планете запасы ядерного оружия в 10-ки тысяч раз превышают эту величину. Комплекс поражающих факторов ядерного взрыва делает атомное оружие особенно разрушающим, опасным для человечества и природы видом оружия, подобного которому еще не знала история. И не случайно известный индийский юрист еще в конце 50-х годов в своей книге "Ядерное оружие и международное право" дал такую характеристику этому оружию массового уничтожения: "Ядерное оружие незаконная не только вследствие радиоактивного яда, но также и в силу присущего ей элемента терроризации; сверхмощные термоядерные бомбы отвергают старое понятие "военного объекта" и ставят на его место "населения" или "человеческий объект ", превращая средства войны в инструмент террора. В результате отрицаются все законы сухопутной, морской и воздушной войны, так же как и нормы, регулирующие режим больных, раненых и военнопленных. Дух гуманности, которым проникнуты положения конвенции 1948 о запрете геноцида и принципы Устава Международного военного трибунала, который признал военным преступлением уничтожение гражданского населения, были бы нарушены применением этой бесчеловечной оружия массового уничтожения ". Между прочим, когда были написаны эти строки, мир еще не знал во всей полноте о человеконенавистнические замыслы конструкторов нейтронного оружия.

Литература

1. В.А.Михайлов, И.А.Науменко. Ядерная физика и ядерное оружие

2. В.С.Емельянов. Нейтронная бомба - угроза человечеству (об особой опасности ядерного нейтронного оружия)

3. С.Петров. Ядерное оружие

4. https://ru.wikipedia.org/wiki

Размещено на Allbest.ru

...

Подобные документы

    Разработка физических принципов осуществления ядерного взрыва. Характеристика ядерного оружия. Устройство атомной бомбы. Поражающие факторы ядерного взрыва: воздушная (ударная) волна, проникающая радиация, световое излучение, радиоактивное заражение.

    презентация , добавлен 12.02.2014

    Что такое ядерное оружие, история его создания. Характеристика ядерных взрывов. Боевые свойства ядерного оружия, виды ядерных взрывов, их поражающие факторы. Что такое очаг ядерного поражения, зоны радиоактивного заражения. Развитие ядерного оружия.

    презентация , добавлен 25.06.2010

    Поражающие факторы ядерного оружия. Атомный, термоядерный и комбинированный виды ядерных боеприпасов. Виды ядерных взрывов. Способы защиты человека от влияния ядерного оружия. Использование населением коллективных и индивидуальных средств защиты.

    курсовая работа , добавлен 25.10.2011

    Краткая история создания атомной бомбы, особенности ее устройства. Первые испытания ядерного оружия, факторы его поражения. Атомные бомбардировки Хиросимы и Нагасаки - единственный в истории человечества пример боевого использования ядерного оружия.

    презентация , добавлен 06.05.2014

    Роль ядерного оружия в безопасности России. История развития ядерного и нейтронного оружия в США. Первый взрыв нейтронного зарядного устройства. Создание ядерного оружия третьего поколения - Супер-ЭМИ с усиленным выходом электромагнитного излучения.

    реферат , добавлен 03.04.2011

    Понятие и принцип действия ядерного оружия, его компоненты и порядок приведения в рабочее состояние. Характеристика частей ядерного боеприпаса и его поражающие факторы. Последствия ядерной войны для окружающей среды и людей, попавших в зону ее действия.

    реферат , добавлен 22.04.2010

    Ядерное оружие - взрывное устройство, в котором источником энергии является ядерная реакция, его отличия от термоядерного оружия. Принадлежность ядерного оружия к средствам массового поражения. Формирование атомного гриба, поражающие факторы взрыва.

    презентация , добавлен 25.02.2011

    Поражающее действие ядерного взрыва, его зависимость от мощности боеприпаса, вида, типа ядерного заряда. Характеристика пяти поражающих факторов (ударная волна, световое излучение, радиоактивное заражение, проникающая радиация и электромагнитный импульс).

    реферат , добавлен 11.10.2014

    Ядерное оружие, характеристики очага ядерного поражения. Поражающие факторы ядерного взрыва. Воздействие воздушной ударной волны и проникающей радиации. Химическое и биологическое оружие и возможные последствия их применения. Обычные средства поражения.

    презентация , добавлен 24.06.2012

    Краткая характеристика ядерного оружия, его воздействие на объекты и человека. Поражающие факторы ядерного взрыва: световое излучение, проникающая радиация. Четыре степени лучевой болезни. Правила поведения и действия населения в очаге ядерного поражения.

Взрывного действия, основанное на использовании внутриядерной энергии, выделяющейся при цепных реакциях деления тяжелых ядер некоторых изотопов урана и плутония или при термоядерных реакциях синтеза изотопов водорода (дейтерия и трития) в более тяжелые, например ядра изогона гелия. При термоядерных реакциях выделяется энергии в 5 раз больше, чем при реакциях деления (при одной и той же массе ядер).

Ядерное оружие включает различные ядерные боеприпасы, средства доставки их к цели (носители) и средства управления.

В зависимости от способа получения ядерной энергии боеприпасы подразделяют на ядерные (на реакциях деления), термоядерные (на реакциях синтеза), комбинированные (в которых энергия получается по схеме «деление — синтез — деление»). Мощность ядерных боеприпасов измеряется тротиловым эквивалентом, т. с. массой взрывчатого вещества тротила, при взрыве которою выделяется такое количество энергии, как при взрыве данного ядерного босирипаса. Тротиловый эквивалент измеряется в тоннах, килотоннах (кт), мегатоннах (Мт).

На реакциях деления конструируются боеприпасы мощностью до 100 кт, на реакциях синтеза — от 100 до 1000 кт (1 Мт). Комбинированные боеприпасы могут быть мощностью более 1 Мт. По мощности ядерные боеприпасы делят на сверхмалые (до 1 кг), малые (1 -10 кт), средние (10-100 кт) и сверхкрупные (более 1 Мт).

В зависимости от целей применения ядерного оружия ядерные взрывы могут быть высотными (выше 10 км), воздушными (не выше 10 км), наземными (надводными), подземными (подводными).

Поражающие факторы ядерного взрыва

Основными поражающими факторами ядерного взрыва являются: ударная волна, световое излучение ядерного взрыва, проникающая радиация, радиоактивное заражение местности и электромагнитный импульс.

Ударная волна

Ударная волна (УВ) — область резко сжатого воздуха, распространяющаяся во все стороны от центра взрыва со сверхзвуковой скоростью.

Раскаленные пары и газы, стремясь расшириться, производят резкий удар по окружающим слоям воздуха, сжимают их до больших давлений и плотности и нагревают до высокой температуры (несколько десятков тысяч градусов). Этот слой сжатого воздуха представляет ударную волну. Передняя граница сжатого слоя воздуха называется фронтом ударной волны. За фронтом УВ следует область разряжения, где давление ниже атмосферного. Вблизи центра взрыва скорость распространения УВ в несколько раз превышает скорость звука. С увеличением расстояния от места взрыва скорость распространения волны быстро падает. На больших расстояниях ее скорость приближается к скорости распространения звука в воздухе.

Ударная волна боеприпаса средней мощности проходит: первый километр за 1,4 с; второй — за 4 с; пятый — за 12 с.

Поражающее воздействие УВ на людей, технику, здания и сооружения характеризуется: скоростным напором; избыточным давлением во фронте движения УВ и временем ее воздействия на объект (фаза сжатия).

Воздействие УВ на людей может быть непосредственным и косвенным. При непосредственном воздействии причиной травм является мгновенное повышение давления воздуха, что воспринимается как резкий удар, ведущий к переломам, повреждению внутренних органов, разрыву кровеносных сосудов. При косвенном воздействии люди поражаются летящими обломками зданий и сооружений, камнями, деревьями, битым стеклом и другими предметами. Косвенное воздействие достигает 80 % от всех поражений.

При избыточном давлении 20-40 кПа (0,2-0,4 кгс/см 2) незащищенные люди могут получить легкие поражения (легкие ушибы и контузии). Воздействие УВ с избыточным давлением 40-60 кПа приводит к поражениям средней тяжести: потеря сознания, повреждение органов слуха, сильные вывихи конечностей, поражения внутренних органов. Крайне тяжелые поражения, нередко со смертельным исходом, наблюдаются при избыточном давлении свыше 100 кПа.

Степень поражения ударной волной различных объектов зависит от мощности и вида взрыва, механической прочности (устойчивости объекта), а также от расстояния, на котором произошел взрыв, рельефа местности и положения объектов на местности.

Для защиты от воздействия УВ следует использовать: траншеи, щели и окопы, снижающие се действие в 1,5-2 раза; блиндажи — в 2-3 раза; убежища — в 3-5 раз; подвалы домов (зданий); рельеф местности (лес, овраги, лощины и т. д.).

Световое излучение

Световое излучение — это поток лучистой энергии, включающий ультрафиолетовые, видимые и инфракрасные лучи.

Его источник — светящаяся область, образуемая раскаленными продуктами взрыва и раскаленным воздухом. Световое излучение распространяется практически мгновенно и длится, в зависимости от мощности ядерного взрыва, до 20 с. Однако сила его такова, что, несмотря на кратковременность, оно способно вызывать ожоги кожи (кожных покровов), поражение (постоянное или временное) органов зрения людей и возгорание горючих материалов объектов. В момент образования светящейся области температура на ее поверхности достигает десятков тысяч градусов. Основным поражающим фактором светового излучения является световой импульс.

Световой импульс — количество энергии в калориях, падающей на единицу площади поверхности, перпендикулярной направлению излучения, за все время свечения.

Ослабление светового излучения возможно вследствие экранирования его атмосферной облачностью, неровностями местности, растительностью и местными предметами, снегопадом или дымом. Так, густой лее ослабляет световой импульс в А-9 раз, редкий — в 2-4 раза, а дымовые (аэрозольные) завесы — в 10 раз.

Для защиты населения от световою излучения необходимо использовать защитные сооружения, подвалы домов и зданий, защитные свойства местности. Любая преграда, способная создать тень, защищает от прямого действия светового излучения и исключает ожоги.

Проникающая радиация

Проникающая радиация — ноток гамма-лучей и нейтронов, излучаемых из зоны ядерного взрыва. Время ее действия составляет 10-15 с, дальность — 2-3 км от центра взрыва.

При обычных ядерных взрывах нейтроны составляют примерно 30 %, при взрыве нейтронных боеприпасов — 70-80 % от у-излучения.

Поражающее действие проникающей радиации основано на ионизации клеток (молекул) живого организма, приводящей к гибели. Нейтроны, кроме того, взаимодействуют с ядрами атомов некоторых материалов и могут вызвать в металлах и технике наведенную активность.

Основным параметром, характеризующим проникающую радиацию, является: для у-излучений — доза и мощность дозы излучения, а для нейтронов — поток и плотность потока.

Допустимые дозы облучения населения в военное время: однократная — в течение 4 суток 50 Р; многократная — в течение 10-30 суток 100 Р; в течение квартала — 200 Р; в течение года — 300 Р.

В результате прохождения излучений через материалы окружающей среды уменьшается интенсивность излучения. Ослабляющее действие принято характеризовать слоем половинного ослабления, т. с. такой толщиной материала, проходя через которую радиация уменьшается в 2 раза. Например, в 2 раза ослабляют интенсивность у-лучей: сталь толщиной 2,8 см, бетон — 10 см, грунт — 14 см, дерево — 30 см.

В качестве защиты от проникающей радиации используются защитные сооружения , которые ослабляют ее воздействие от 200 до 5000 раз. Слой фунта в 1,5 м защищает от проникающей радиации практически полностью.

Радиоактивное загрязнение (заражение)

Радиоактивное загрязнение воздуха, местности, акватории и расположенных на них объектов происходит в результате выпадения радиоактивных веществ (РВ) из облака ядерного взрыва.

При температуре примерно 1700 °С свечение светящейся области ядерного взрыва прекращается и она превращается в темное облако, к которому поднимается пылевой столб (поэтому облако имеет грибовидную форму). Это облако движется по направлению ветра, и из него выпадают РВ.

Источниками РВ в облаке являются продукты деления ядерного горючего (урана, плутония), непрореагировавшая часть ядерного горючего и радиоактивные изотопы, образующиеся в результате действия нейтронов на грунт (наведенная активность). Эти РВ, находясь на загрязненных объектах, распадаются, испуская ионизирующие излучения, которые фактически и являются поражающим фактором.

Параметрами радиоактивного загрязнения являются доза облучения (по воздействию на людей) и мощность дозы излучения — уровень радиации (по степени загрязнения местности и различных объектов). Эти параметры являются количественной характеристикой поражающих факторов: радиоактивного загрязнения при аварии с выбросом РВ, а также радиоактивною загрязнения и проникающей радиации при ядерном взрыве.

На местности, подвергшейся радиоактивному заражению при ядерном взрыве, образуются два участка: район взрыва и след облака.

По степени опасности зараженную местность по следу облака взрыва принято делить на четыре зоны (рис. 1):

Зона А — зона умеренного заражения. Характеризуется дозой излучения до полного распада радиоактивных веществ на внешней границе зоны 40 рад и на внутренней — 400 рад. Площадь зоны А составляет 70-80 % площади всего следа.

Зона Б — зона сильного заражения. Дозы излучения на границах равны соответственно 400 рад и 1200 рад. Площадь зоны Б — примерно 10 % площади радиоактивною следа.

Зона В — зона опасного заражения. Характеризуется дозами излучения на границах 1200 рад и 4000 рад.

Зона Г — зона чрезвычайно опасного заражения. Дозы на границах 4000 рад и 7000 рад.

Рис. 1. Схема радиоактивного загрязнения местности в районе ядерного взрыва и по следу движения облака

Уровни радиации на внешних границах этих зон через 1 час после взрыва составляет соответственно 8, 80, 240, 800 рад/ч.

Большая часть радиоактивных осадков, вызывающая радиоактивное заражение местности, выпадает из облака за 10-20 ч после ядерного взрыва.

Электромагнитный импульс

Электромагнитный импульс (ЭМИ) — это совокупность электрических и магнитных полей, возникающих в результате ионизации атомов среды под воздействием гамма-излучения. Продолжительность его действия составляет несколько миллисекунд.

Основными параметрами ЭМИ являются наводимые в проводах и кабельных линиях токи и напряжения, которые могут приводить к повреждению и выводу из строя радиоэлектронной аппаратуры, а иногда и к повреждению работающих с аппаратурой людей.

При наземном и воздушном взрывах поражающее действие электромагнитного импульса наблюдается на расстоянии нескольких километров от центра ядерного взрыва.

Наиболее эффективной защитой от электромагнитного импульса является экранирование линий энергоснабжения и управления, а также радио- и электроаппаратуры.

Обстановка, складывающаяся при применении ядерного оружия в очагах поражения.

Очаг ядерного поражения — это территория, в пределах которой в результате применения ядерного оружия произошли массовые поражения и гибель людей, сельскохозяйственных животных и растений, разрушения и повреждения зданий и сооружений, коммунально-энергетических и технологических сетей и линий, транспортных коммуникаций и других объектов.

Зоны очага ядерного взрыва

Для определения характера возможных разрушений, объема и условий проведения аварийно-спасательных и других неотложных работ очаг ядерного поражения условно делят на четыре зоны: полных, сильных, средних и слабых разрушений.

Зона полных разрушений имеет па границе избыточное давление на фронте ударной волны 50 кПа и характеризуется массовыми безвозвратными потерями среди незащищенного населения (до 100 %), полными разрушениями зданий и сооружений, разрушениями и повреждениями коммунально-энергетических и технологических сетей и линий, а также части убежищ гражданской обороны, образованием сплошных завалов в населенных пунктах. Лес полностью уничтожается.

Зона сильных разрушений с избыточным давлением на фронте ударной волны от 30 до 50 кПа характеризуется: массовыми безвозвратными потерями (до 90 %) среди незащищенного населения, полными и сильными разрушениями зданий и сооружений, повреждением коммунально- энергетических и технологических сетей и линий, образованием местных и сплошных завалов в населенных пунктах и лесах, сохранением убежищ и большинства противорадиационных укрытий подвального типа.

Зона средних разрушений с избыточным давлением от 20 до 30 кПа характеризуется безвозвратными потерями среди населения (до 20 %), средними и сильными разрушениями зданий и сооружений, образованием местных и очаговых завалов, сплошных пожаров, сохранением коммунально-энергетических сетей, убежищ и большинства противорадиационных укрытий.

Зона слабых разрушений с избыточным давлением от 10 до 20 кПа характеризуется слабыми и средними разрушениями зданий и сооружений.

Очаг поражения но количеству погибших и пораженных может быть соизмерим или превосходить очаг поражения при землетрясении. Так, при бомбежке (мощность бомбы до 20 кт) города Хиросима 6 августа 1945 г. его большая часть (60 %) была разрушена, а число погибших составило до 140 000 чел.

Персонал объектов экономики и население, попадающие в зоны радиоактивного заражения, подвергаются воздействию ионизирующих излучений, что вызывает лучевую болезнь. Тяжесть болезни зависит от полученной дозы излучения (облучения). Зависимость степени лучевой болезни от величины дозы излучения приведена в табл. 2.

Таблица 2. Зависимость степени лучевой болезни от величины дозы облучения

В условиях военных действий с применением ядерного оружия в зонах радиоактивного заражения могут оказаться обширные территории, а облучение людей — принять массовый характер. Для исключения переоблучения персонала объектов и населения в таких условиях и для повышения устойчивости функционирования объектов народного хозяйства в условиях радиоактивного заражения па военное время устанавливают допустимые дозы облучения. Они составляют:

  • при однократном облучении (до 4 суток) — 50 рад;
  • многократном облучении: а) до 30 суток — 100 рад; б) 90 суток — 200 рад;
  • систематическом облучении (в течение года) 300 рад.

Вызванные применением ядерного оружия, наиболее сложные. Для их ликвидации необходимы несоизмеримо большие силы и средства, чем при ликвидации ЧС мирного времени.

Атомное оружие – устройство, получающее огромную взрывную мощность от реакций ДЕЛЕНИЯ АТОМНОГО ЯДРА и ЯДЕРНОГО СИНТЕЗА.

Об Атомном оружиии

Атомное оружие – самое мощное оружие на сегодняшний день, находящееся на вооружении пяти стран: России, США, Великобритании, Франции и Китая. Существует также ряд государств, которые ведут более-менее успешные разработки атомного оружия, однако их исследования или не закончены, или эти страны не обладают необходимыми средствами доставки оружия к цели. Индия, Пакистан, Северная Корея, Ирак, Иран имеют разработки ядерного оружия на разных уровнях, ФРГ, Израиль, ЮАР и Япония теоретически обладают необходимыми мощностями для создания ядерного оружия в сравнительно короткие сроки.

Трудно переоценить роль ядерного оружия. С одной стороны, это мощное средство устрашения, с другой – самый эффективный инструмент укрепления мира и предотвращения военного конфликтами между державами, которые обладают этим оружием. С момента первого применения атомной бомбы в Хиросиме прошло 52 года. Мировое сообщество близко подошло к осознанию того, что ядерная война неминуемо приведет к глобальной экологической катастрофе, которая сделает дальнейшее существование человечества невозможным. В течение многих лет создавались правовые механизмы, призванные разрядить напряженность и ослабить противостояние между ядерными державами. Так например, было подписано множество договоров о сокращении ядерного потенциала держав, была подписана Конвенция о Нераспространении Ядерного Оружия, по которой страны-обладателя обязались не передавать технологии производства этого оружия другим странам, а страны, не имеющие ядерного оружия, обязались не предпринимать шагов для его разработки; наконец, совсем недавно сверхдержавы договорились о полном запрещении ядерных испытаний. Очевидно, что ядерное оружие является важнейшим инструментом, который стал регулирующим символом целой эпохи в истории международных отношений и в истории человечества.

Атомное оружие

АТОМНОЕ ОРУЖИЕ, устройство, получающее огромную взрывную мощность от реакций ДЕЛЕНИЯ АТОМНОГО ЯДРА и ЯДЕРНОГО СИНТЕЗА. Первое ядерное оружие было применено Соединенными Штатами против японских городов Хиросимы и Нагасаки в августе 1945 г. Эти атомные бомбы состояли из двух стабильных доктритических масс УРАНА и ПЛУТОНИЯ, которые при сильном сталкивании вызвали превышение КРИТИЧЕСКОЙ МАССЫ, тем самым провоцируя бесконтрольную ЦЕПНУЮ РЕАКЦИЮ деления атомных ядер. При таких взрывах высвобождается огромное количество энергии и губительной радиации: взрывная мощность может равняться мощности 200 000 тонн тринитротолуола. Гораздо более мощная водородная бомба (термоядерная бомба), впервые испытанная в 1952 г., состоит из атомной бомбы, которая во время взрыва создает температуру, достаточно высокую для того, чтобы вызвать ядерный синтез в близлежащем твердом слое, обычно - в детеррите лития. Взрывная мощность может равняться мощности нескольких миллионов тонн (мегатонн) тринитротолуола. Площадь поражения, вызванного такими бомбами, достигает больших размеров: 15 мегатонная бомба взорвет все горящие вещества в пределах 20 км. Третий тип ядерного оружия, нейтронная бомба, является небольшой водородной бомбой, называемой также оружием повышенной радиации. Она вызывает слабый взрыв, который, однако, сопровождается интенсивным выбросом высокоскоростных НЕЙТРОНОВ. Слабость взрыв означает то, что здания повреждаются не сильно. Нейтроны же вызывают серьезную лучевую болезнь у людей, находящихся в пределах определенного радиуса от места взрыва, и убивают всех пораженных в течении недели.

Вначале взрыв атомной бомбы (А) образует огненный шар (1) с температурой и миллионы градусов по Цельсию и испускает радиационное излучение (?) Через несколько минут (В) шар увеличивается в обьеме и создав!ударную волну с высоким давлением (3). Огненный шар поднимается (С), всасывая пыль и обломки, и образует грибовидное облако (D), По мере увеличения в обьеме огненный шар создает мощное конвекционное течение (4), выделяя горячее излучение (5) и образуя облако (6), При взрыве 15 мегатонной бомбы разрушение от взрывной волны являются полным (7) в радиусе 8 км, серьезными (8) в радиусе 15км и заметными (Я) в радиусе 30 км Даже на расстоянии 20 км (10) взрываются все легковоспламеняющиеся вещества, В течение двух дней после взрыва бомбы на расстоянии 300 км от взрыва продолжается выпадение осадков с радиоактивной дозой в 300 рентген Прилагаемая фотография показывает, как взрыв крупного ядерного оружия на земле создает огромное грибовидное облако радиоактивной пыли и обломков, которое может достигать высоты нескольких километров. Опасная пыль, находящаяся в воздухе, свободно переносится затем преобладающими ветрами в любом направлении Опустошение покрывает огромную территорию.

Современные атомные бомбы и снаряды

Радиус действия

В зависимости от мощности атомного заряда атомные бомбы,снаряды делят на калибры:малый,средний и крупный . Чтобы получить энергию, равную энергии взрыва атомной бомбы малого калибра, нужно взорвать несколько тысяч тонн тротила. Тротиловый эквивалент атомной бомбы среднего калибра составляет десятки тысяч, а бомбы крупного калибра – сотни тысяч тонн тротила. Еще большей мощностью может обладать термоядерное (водородное) оружие, его тротиловый эквивалент может достигать миллионов и даже десятков миллионов тонн. Атомные бомбы, тротиловый эквивалент которых равен 1- 50 тыс. т,относят к классу тактических атомных бомб и предназначают для решения оперативно-тактических задач. К тактическому оружию относят также: артиллерийские снаряды с атомным зарядом мощность 10 – 15 тыс. т. и атомные заряды (мощностью около 5 – 20 тыс. т) для зенитных управляемых снарядов и снарядов, используемых для вооружения истребителей. Атомные и водородные бомбы мощностью свыше 50 тыс. т относят к классу стратегического оружия.

Нужно отметить,что подобная классификация атомного оружия является лишь условной, поскольку в действительности последствие применения тактического атомного оружия могут быть не меньшими, чем те, которые испытало на себе население Хиросимы и Нагасаки, а даже большими. Сейчас очевидно, что взрыв только одной водородной бомбы способен вызвать такие тяжелые последствия на огромных территориях, каких не несли с собой десятки тысяч снарядов и бомб, применявшихся в прошлых мировых войнах. А нескольких водородных бомб вполне достаточно, чтобы превратить в зону пустыни огромные территории.

Ядерное оружие подразделяется на 2 основных типа: атомное и водородное (термоядерное). В атомном оружии выделение энергии происходит за счет реакции деления ядер атомов тяжелых элементов урана или плутония. В водородном оружии энергия выделяется в результате образования (или синтеза) ядер атомов гелия из атомов водорода.

Термоядерное оружие

Современное термоядерное оружие относится к стратегическому оружию, которое может применяться авиацией для разрушения в тылу противника важнейших промышленных, военных объектов, крупных городов как цивилизационных центров. Наиболее известным типом термоядерного оружия являются термоядерные (водородные) бомбы, которые могут доставляться к цели самолетами. Термоядерными зарядами могут начиняться также боевые части ракет различного назначения, в том числе межконтинентальных баллистических ракет. Впервые подобная ракета была испытана в СССР еще в 1957 году, в настоящее время на вооружения Ракетных Войск Стратегического Назначения состоят ракеты нескольких типов, базирующиеся на мобильных пусковых установках, в шахтных пусковых установках, на подводных лодках.

Атомная бомба

В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями. В этих реакциях, протекающих при сверхвысоких температурах и давлении, энергия выделяется за счет образования ядер гелия из ядер водорода, или из ядер водорода и лития. Для образования гелия используется, в основном, тяжелый водород – дейтерий, ядра которого имеют необычную структуру – один протон и один нейтрон. При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия. Результатом этого процесса и становится выделения энергии.

Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой, которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии (для поддержания из жидкостного агрегатного состояния). Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота. Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы. Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес (более 60 т.), из-за чего нельзя было и думать об использовании таких зарядов на стратегических бомбардировщиках, а уж тем более в баллистических ракетах любой дальности. Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение.

В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы. Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах.

Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно- урановая бомба, а также некоторые ее разновидности – сверхмощные и, наоборот, малокалиберные бомбы. Последним этапом совершенствования термоядерного оружия стало создания так называемой «чистой» водородной бомбы.

Водородная бомба

Первые разработки этой модификации термоядерной бомбы появились еще в 1957 году, на волне пропагандистских заявлений США о создании некоего «гуманного» термоядерного оружия, которое не несет столько вреда для будущих поколений, сколько обычная термоядерная бомба. В претензиях на «гуманность» была доля истины. Хотя разрушительная сила бомбы не была меньшей, в то же время она могла быть взорвана так, чтобы не распространялся стронций-90, который при обычном водородном взрыве в течение длительного времени отравляем земную атмосферу. Все, что находится в радиусе действия подобной бомбы, будет уничтожено, однако опасность для живых организмов, которые удалены от взрыва, а также для будущих поколений, уменьшится. Однако данные утверждения были опровергнуты учеными, которые напомнили, что при взрывах атомных или водородных бомб образуется большое количество радиоактивной пыли, которая поднимается мощным потоком воздуха на высоту до 30 км, а потом постепенно оседает на землю на большой площади, заражая её. Исследования, проведенные учеными, показывают, что понадобится от 4 до 7 лет, чтобы половина этой пыли выпала на землю.

Видео

  • США впервые применили ядерное оружие. Хиросима и Нагасаки, жертвы военного устрашения человечества

    Сегодня все прогрессивное человечество отмечает Всемирный день борьбы за запрет ядерного оружия.

    70 лет назад, 6 августа 1945 г. США впервые в истории человечества применило ядерное оружие. Сброшенная на город Хиросиму атомная боеголовка мощностью 16 килотонн в миг превратила 80 тыс. мирных людей в пепел. Через 3 дня атомная бомба большей мощности была сброшена на соседний город Нагасаки. Потери мирного населения составили от 200 до 270 тыс. человек. Включая погибших от лейкемии и других последствий лучевой болезни в следующие 20 лет количество жертв составило 450 тыс. чел.

    Власти Японии не понимали, что именно произошло, пока через шестнадцать часов официальный Вашингтон не объявил на весь мир об атомной атаке Хиросимы. По этой причине выжившие жители седьмого по величине города Японии, разрушенного до основания, первое время не получали помощи.

    США применили ядерное оружие. Как это было?

    Безуспешно используя тактику высокоточных бомбёжек стратегических объектов Японии, США решили поменять направление, и под прицелом с февраля 1945 г. оказалось исключительно мирное население. Первыми жертвами таких нападений стали жители Токио, 100 тысяч из которых заживо сгорели в поднявшейся огневой буре после одной из февральских бомбардировок. 1 700 т бомб, сброшенных на город, разрушили половину жилых зданий, остальные же загорались сами собой из-за высокой температуры воздуха. 10 марта 1945 г. вошло в историю как дата самой разрушительной неатомной бомбардировки за всю историю. Но США не остановились на достигнутом.

    В 8 утра 6 августа 1945 г. на высоте 600 м над городом Хиросима была приведена в действие атомная бомба «Малыш». Пролетавшие мимо птицы сгорали в воздухе, а от людей температура в 1000-2000 градусов в радиусе 500 м оставляла только силуэты на стенах.

    Тепловое излучение наступило почти сразу за взрывной волной. От вжигания одежды в кожу и оплавления спаслись только те, кто находился в помещениях. Но на них обрушивались стены или ударная волна выбрасывала их из домов на большие расстояния. На 19 км вокруг были выбиты стекла, сами по себе возгорались воспламеняющиеся материалы (например, бумага). Эти небольшие пожары быстро объединились в один огненный смерч, двигающийся обратно к эпицентру взрыва и погубивший всех, кто не успел выбраться в первые минуты.

    Атомная бомбардировка предполагает не только разрушения, но и радиационное загрязнение, несовместимое с человеческой жизнью. Через несколько дней, выжившие 7% хиросимских медиков начали отмечать у пациентов первые симптомы лучевой болезни. Те, кто не получил физических повреждений, но были в радиусе 1 км от взрыва, погибали в течение недели. Через месяц смерти от лучевой болезни достигли максимума. Об опухолях, лейкемии, «атомных катарактах» и других последствиях облучения пострадавшие от атаки США узнают в течение года, постепенно пополняя список погибших, и через 10 лет удвоив его.

    «Прошло чуть более месяца с того дня, как мы сбросили на город атомную бомбу, а некоторые тела все еще лежали на улицах. По обе стороны дороги виднелись многочисленные черепа …

    На улицах мы встречали людей с жуткими увечьями и ожогами, умирающими от страшной болезни, поселившейся у них в крови. Они безразлично, с обреченным взглядом сидели и спали под навесами прямо на улицах, дожидаясь своего конца. Они смотрели на нас и не замечали, не узнавали. И, наверное, это к лучшему, что они не узнали нас… »

    Чак Суини, глава экипажа самолета, сбросившего атомную бомбу на Нагасаки, вернувшийся туда с научной экспедицией.

    США применили ядерное оружие в борьбе за мировую гегемонию

    Как признался позже американский генерал Эйзенхауэр, необходимости применять ядерное оружие не было: «Япония уже была разгромлена». Эта страна, принявшая во время Второй мировой войны сторону Гитлера и весьма жестоко воевавшая с Китаем, к началу 1945 г. оставалась последним непораженным государством с «коричневой чумой». Но уже тогда Япония была подвержена морской блокаде, и в виду географического расположения и героического продвижения Красной Армии на Берлин, ее капитуляция была вопросом времени. В конце июля 1945 г. Император Японии даже запросил у СССР мнение о возможности мирного договора.

    Со своей стороны, США своим участием в этой войне преследовали совсем другие цели. Еще в сентябре 1944 г. президент США Франклин Рузвельт и премьер-министр Великобритании Уинстон Черчилль заключили договорённость, по которой предусматривалась вероятность применения атомного оружия против Японии. И дело было вовсе не в Японии, а в советской военной силе, которая, не смотря на всю поддержку, оказываемую немецкой армии Европой, сумела развернуть ход войны в сторону, обратную от ожидаемой.

    http://qps.ru/3XpxW

    Освобождавший Европу от Гитлера, советский мировой «лидер», как видели его США и Великобритания, обладал мощью, которую следовало контролировать. И если Гитлер со своей больной звуковой идеей фашизма не смог справиться с этой задачей, то США желали обозначить свою гегемонию благодаря новейшим научным военным разработкам. Похваставшись перед Сталиным на Потсдамской встрече новым оружием невиданной разрушительной силы, Президент США Гарри Трумэн через неделю отдал распоряжение предъявить его миру, убивая мирных японцев.

    «Одна бомба или тысячи бомб. Какая разница?»

    Ван Кирк, штурман «Энолы Гей», сбросившей бомбу на Хиросиму

    Убежденные в своем первенстве, главы западных стран, обладателей кожного менталитета не подозревали, что Сталин уже, выводя лучшие научные кадры из работы над наземным вооружением для Отечественной войны, как только возможно, ускоряет проект, курируемый Курчатовым. Проект для сохранения жизни грядущих поколений, на который отдавала силы вся страна.

    Через 4 года (на 10 лет раньше, чем ожидали эксперты) советская атомная бомба была успешно испытана в Казахстане. Послевоенное поколение советских ученых работало над созданием «красной кнопки», которая сегодня обеспечивает нам и нашим партнерам защищенность от баз НАТО и возможность жить без ядерного загрязнения. С 1949 г. и до сих пор мы защищены от нападения.

    Но атаки продолжаются в другой форме. Более опасными и эффективными сегодня оказались информационные войны, лишившие многие постсоветские страны истории и, по сути, будущего. Вынудив их население к разрушительным действиям против самих себя и России. Влияние США в этот Всемирный день борьбы за запрет ядерного оружия наглядно можно увидеть и в Японии. За 70 лет население страны (согласно опросам) мало что знает о ядерных бомбардировках, а молодое поколение считает, что виновником трагедии является СССР.

    Само американское население сегодня, как и в 1945 году считает, что ядерные бомбардировки Японии оправданы. Патриотично настроенные, но аполитичные американцы предпочитают не задумываться над последствиями разрушительных действий своего правительства для других народов. В июне 2015 г. на пляжах Сан-Диего собирали подписи о ядерном ударе по России. И эти люди не думают о последствиях, так как они для них неощутимы (например, фото реальных жертв Хиросимы были раскрыты в США только через 30 лет).

    Известна судьба японской девочки Садако, складывающей из бумаги 1 000 легендарных журавликов. Она не успела, и желание выздороветь не сбылось — лейкемия настигла ее через 10 лет после ядерного удара. И это не должно повториться. Силой своей консолидации только Россия сегодня может обеспечить мирное развитие человечества. И на ней лежит вся ответственность за его будущее.

    Сегодня мир с надеждой смотрит на Россию. Единственную страну, способную предотвратить своеволие тех, кто осуждал Германию на Нюрнбергском процессе и пользуется ее же методами сегодня.

В последние месяцы КНДР и США активно обмениваются угрозами уничтожить друг друга. Так как обе страны имеют ядерный арсенал, мир напряженно следит за развитием ситуации. В День борьбы за полную ликвидацию ядерного оружия мы решили напомнить, кто и в каких количествах им располагает. На сегодняшний день официально известно о наличии такого оружия у восьми стран, которые образуют так называемый Ядерный клуб.

У кого точно есть ядерное оружие

Первым и единственным государством, применившим ядерное оружие против другой страны, является США . В августе 1945 года во время Второй мировой войны США сбросили на японские города Хиросима и Нагасаки ядерные бомбы. В результате атаки погибли более 200 тысяч человек.


Ядерный гриб над Хиросимой (слева) и Нагасаки (справа). Источник: wikipedia.org

Год первого испытания: 1945

Носители ядерных зарядов: подлодки, баллистические ракеты и бомбардировщики

Количество боеголовок: 6800, в том числе 1800 развернутых (готовых к применению)

Россия обладает наибольшим ядерным запасом. После распада Союза единственным наследником ядерного арсенала стала Россия.

Год первого испытания: 1949

Носители ядерных зарядов: подлодки, ракетные комплексы, тяжелые бомбардировщики, в будущем — ядерные поезда

Количество боеголовок: 7000, в том числе 1950 развернутых (готовых к применению)

Великобритания — единственная страна, которая не провела ни одного испытания на своей территории. В стране — 4 подлодки с ядерными боезарядами, другие виды войск расформированы к 1998 году.

Год первого испытания: 1952

Носители ядерных зарядов: подлодки

Количество боеголовок: 215, в том числе 120 развернутых (готовых к применению)

Франция провела наземные испытания ядерного заряда в Алжире, где построила для этого полигон.

Год первого испытания: 1960

Носители ядерных зарядов: подлодки и истребители-бомбардировщики

Количество боеголовок: 300, в том числе 280 развернутых (готовых к применению)

Китай испытывает оружие только на своей территории. Китай обязался первым не применять ядерное оружие. КНР в передаче технологий по изготовлению ядерного оружия Пакистану.

Год первого испытания: 1964

Носители ядерных зарядов: баллистические ракеты-носители, подлодки и стратегические бомбардировщики

Количество боеголовок: 270 (в резерве)

Индия объявила о наличии у себя ядерного оружия в 1998 году. В ВВС Индии носителями ядерного оружия могут быть французские и российские тактические истребители.

Год первого испытания: 1974

Носители ядерных зарядов: ракеты малой, средней и увеличенной дальности

Количество боеголовок: 120−130 (в резерве)

Пакистан испытал свое оружие в ответ на действия Индии. Реакцией на появление у страны ядерного оружия стали мировые санкции. Недавно бывший президент Пакистана Первез Мушарраф , что Пакистан рассматривал возможность нанесения ядерного удара по Индии в 2002 году. Бомбы могут доставляться истребителями-бомбардировщиками.

Год первого испытания: 1998

Количество боеголовок: 130−140 (в резерве)

КНДР заявила о разработке ядерного оружия в 2005 году, а в 2006-м провела первое испытание. В 2012 страна провозгласила себя ядерной державой и внесла соответствующие поправки в Конституцию. В последнее время КНДР проводит очень много испытаний — страна межконтинентальные баллистические ракеты и угрожает США ядерным ударом по американскому острову Гуаму, который находится в 4 тысячах км от КНДР.


Год первого испытания: 2006

Носители ядерных зарядов: ядерные бомбы и ракеты

Количество боеголовок: 10−20 (в резерве)

Эти 8 стран открыто заявляют о наличии оружия, а также о проводимых испытаниях. Так называемые «старые» ядерные державы (США, Россия, Великобритания, Франция и Китай) подписали Договор о нераспространении ядерного оружия, а «молодые» ядерные державы — Индия и Пакистан отказались ставить подписи под документом. КНДР сначала ратифицировала соглашение, а потом отозвала подпись.

Кто сейчас может разрабатывать ядерное оружие

Главным «подозреваемым» является Израиль . Эксперты полагают, что Израиль владеет ядерным оружием собственного производства с конца 1960-х — начала 1970 годов. Также высказывались мнения, что страна проводила совместные испытания с ЮАР. По оценке Стокгольмского института исследования проблем мира, у Израиля на 2017 год насчитывается порядка 80 ядерных боеголовок. Страна может использовать для доставки ядерного оружия истребители-бомбардировщики и подводные лодки.

Подозрения, что Ирак разрабатывает оружие массового поражения, явилось одной из причин вторжения в страну американских и британских войск (напомним знаменитую речь госсекретаря США Колина Пауэлла в ООН в 2003 году, в которой он заявил, что Ирак работает над программами по созданию биологического и химического оружия и обладает двумя из трех необходимых компонентов для производства ядерного оружия. — Прим. TUT.BY). Позже в США и Великобритании признали, что оснований для вторжения в 2003 году было .

10 лет под международными санкциями находился Иран из-за возобновления при президенте Ахмадинежаде программы по обогащению урана на территории страны. В 2015 году Иран и шесть международных посредников заключили так называемую «ядерную сделку» — были сняты, а Иран обязался ограничить свою ядерную деятельность только «мирным атомом», поставив ее под международный контроль. С приходом к власти в США Дональда Трампа против Ирана вновь ввели . Тегеран тем временем начал .

Мьянму в последние годы также подозревают в попытке создания ядерного оружия, сообщалось, что технологии стране экспортировала Северная Корея. По оценкам экспертов, в Мьянме недостаточно технических и финансовых возможностей для разработки оружия.

В разные годы многие государства подозревали в стремлении или возможности создать ядерное оружие — Алжир, Аргентину, Бразилию, Египет, Ливию, Мексику, Румынию, Саудовскую Аравию, Сирию, Тайвань, Швецию. Но переход от мирного атома к немирному или не был доказан, или страны свернули свои программы.

Какие страны разрешили хранить у себя ядерные бомбы, а кто отказался

В некоторых странах Европы хранятся боеголовки США. По данным Федерации американских ученых (FAS) на 2016 год, в подземных хранилищах в Европе и Турции хранится 150−200 ядерных бомб США. Страны располагают авиацией, способной доставить заряды к предполагаемым целям.

Бомбы хранятся на авиабазах в Германии (Бюхель, более 20 штук), Италии (Авиано и Геди, 70−110 штук), Бельгии (Кляйне Брогель, 10−20 штук), Нидерландах (Волкель, 10−20 штук) и Турции (Инджирлик, 50−90 штук).

В 2015 году сообщалось, что американцы разместят на базе в Германии новейшие атомные бомбы B61−12, а американские инструкторы обучают работе с данными ядерными боеприпасами пилотов ВВС Польши и Балтии.

Недавно в США заявили, что ведут переговоры о размещении своего ядерного оружия , в которой оно хранилось до 1991 года.

Четыре страны добровольно отказались от ядерного оружия на своей территории, в том числе Беларусь.

После распада СССР Украина и Казахстан были на третьем и четвертом местах в мире по количеству ядерного арсенала в мире. Страны согласились на вывод оружия в Россию под международные гарантии безопасности. Казахстан передал России стратегические бомбардировщики, а в США продал уран. В 2008 году президента страны Нурсултана Назарбаева выдвигали на Нобелевскую премию мира за вклад в нераспространение ядерного оружия.

Украина в последние годы поговаривает о том, чтобы восстановить ядерный статус страны. В 2016 году Верховная рада предложила отменить закон «О присоединении Украины к договору о нераспространении ядерного оружия». Ранее секретарь Совета национальной безопасности Украины Александр Турчинов заявлял, что Киев готов использовать имеющиеся ресурсы для создания эффективного оружия.

В Беларуси завершился в ноябре 1996 года. Впоследствии президент Беларуси Александр Лукашенко не раз называл это решение самой серьезной ошибкой . По его мнению, «если бы в стране осталось ядерное оружие, сейчас с нами разговаривали бы иначе».

ЮАР является единственной страной, которая самостоятельно изготовила ядерное оружие, а после падения режима апартеида добровольно от него отказалась.

Кто свернул свои ядерные программы

Ряд стран добровольно, а некоторые и под давлением, либо свернули, либо на этапе планирования развития ядерной программы отказались от нее. Так, например, Австралия в 1960-х годах после предоставления своей территории для ядерных испытаний Великобритании решилась на строительство реакторов и постройку завода по обогащению урана. Однако после внутриполитических дебатов программу свернули.

Бразилия после неудачного сотрудничества с ФРГ в области разработки ядерного оружия в 1970−90-х годах вела «параллельную» ядерную программу вне контроля МАГАТЭ. Велись работы по добыче урана, а также по его обогащению, правда, на лабораторном уровне. В 1990—2000-х годах Бразилия признала существование такой программы, а позже она была закрыта. Сейчас страна обладает ядерными технологиями, которые при принятии политического решения позволят быстро приступить к разработке оружия.

Аргентина начала свои разработки на волне соперничества с Бразилией. В 1970-х программа получила наибольший импульс, когда к власти пришли военные, однако уже к 1990-м администрация сменилась на гражданскую. Когда программу свернули, по оценкам экспертов, оставалось около года работ для достижения технологического потенциала создания ядерного оружия. В итоге в 1991 году Аргентина и Бразилия подписали соглашение об использовании атомной энергии исключительно в мирных целях.

Ливия при Муаммаре Каддафи после неудачных попыток приобрести готовое оружие у Китая и Пакистана решилась на свою ядерную программу. В 1990-х годах Ливия смогла закупить 20 центрифуг для обогащения урана, однако недостаток технологий и квалифицированных кадров не позволил создать ядерное оружие. В 2003 году после переговоров с Великобританией и США Ливия свернула свою программу создания оружия массового уничтожения.

Египет отказался от ядерной программы после аварии на Чернобыльской АЭС.

Тайвань вел свои разработки 25 лет. В 1976 году под давлением МАГАТЭ и США официально отказался от программы и демонтировал установку по выделению плутония. Однако позже возобновил ядерные исследования тайно. В 1987 году один из руководителей Чжуншаньского института науки и техники бежал в США и рассказал о программе. В итоге работы были остановлены.

В 1957 году Швейцария создала Комиссию по изучению возможности обладания ядерным оружием, которая пришла к выводу, что оружие необходимо. Рассматривались варианты покупки оружия у США, Великобритании или СССР, а также разработки его с Францией и Швецией. Однако к концу 1960-х ситуация в Европе успокоилась, и Швейцария подписала Договор о нераспространении ядерного оружия. Потом еще некоторое время страна поставляла ядерные технологии за рубеж.

Швеция вела активные разработки с 1946 года. Ее отличительной чертой являлось создание ядерной инфраструктуры, руководство страны ориентировалось на реализацию концепции замкнутого ядерного топливного цикла. В итоге к концу 1960-х Швеция была готова к серийному производству ядерных боеголовок. В 1970-х ядерную программу закрыли, т.к. власти решили, что страна не потянет одновременное развитие современных видов обычных вооружений и создание ядерного арсенала.

Южная Корея начала свои разработки в конце 1950-х годов. В 1973 году Комитет по исследованию вооружений разработал план на 6−10 лет по созданию ядерного оружия. Велись переговоры с Францией по строительству завода по радиохимической переработке облученного ядерного топлива и выделению плутония. Однако Франция отказалась от сотрудничества. В 1975 году Южная Корея ратифицировала Договор о нераспространении ядерного оружия. США обещали предоставить стране «ядерный зонтик». После того, как президент Америки Картер заявил о намерении вывести войска из Кореи, страна тайно возобновила ядерную программу. Работы продолжались до 2004 года, пока не стали достоянием общественности. Южная Корея свернула свою программу, но на сегодняшний день страна способна в короткие сроки осуществить разработку ядерного оружия.