Меню
Бесплатно
Главная  /  Планирование беременности  /  Отрицательный показатель степени числа. Сложение, вычитание, умножение, и деление степеней

Отрицательный показатель степени числа. Сложение, вычитание, умножение, и деление степеней

Степень используется для упрощения записи операции умножения числа само на себя. Например, вместо записи можно написать 4 5 {\displaystyle 4^{5}} (объяснение такому переходу дано в первом разделе этой статьи). Степени позволяют упростить написание длинных или сложных выражений или уравнений; также степени легко складываются и вычитаются, что приводит к упрощению выражения или уравнения (например, 4 2 ∗ 4 3 = 4 5 {\displaystyle 4^{2}*4^{3}=4^{5}} ).


Примечание: если вам необходимо решить показательное уравнение (в таком уравнении неизвестное находится в показателе степени), прочитайте .

Шаги

Решение простейших задач со степенями

    Умножьте основание степени само на себя числом раз, равным показателю степени. Если вам нужно решить задачу со степенями вручную, перепишите степень в виде операции умножения, где основание степени умножается само на себя. Например, дана степень 3 4 {\displaystyle 3^{4}} . В этом случае основание степени 3 нужно умножить само на себя 4 раза: 3 ∗ 3 ∗ 3 ∗ 3 {\displaystyle 3*3*3*3} . Вот другие примеры:

    Для начала перемножьте первые два числа. Например, 4 5 {\displaystyle 4^{5}} = 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 {\displaystyle 4*4*4*4*4} . Не волнуйтесь - процесс вычисления не такой сложный, каким кажется на первый взгляд. Сначала перемножьте первые две четверки, а затем замените их полученным результатом. Вот так:

    • 4 5 = 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 {\displaystyle 4^{5}=4*4*4*4*4}
      • 4 ∗ 4 = 16 {\displaystyle 4*4=16}
  1. Умножьте полученный результат (в нашем примере 16) на следующее число. Каждый последующий результат будет пропорционально увеличиваться. В нашем примере умножьте 16 на 4. Вот так:

    • 4 5 = 16 ∗ 4 ∗ 4 ∗ 4 {\displaystyle 4^{5}=16*4*4*4}
      • 16 ∗ 4 = 64 {\displaystyle 16*4=64}
    • 4 5 = 64 ∗ 4 ∗ 4 {\displaystyle 4^{5}=64*4*4}
      • 64 ∗ 4 = 256 {\displaystyle 64*4=256}
    • 4 5 = 256 ∗ 4 {\displaystyle 4^{5}=256*4}
      • 256 ∗ 4 = 1024 {\displaystyle 256*4=1024}
    • Продолжайте умножать результат перемножения первых двух чисел на следующее число до тех пор, пока не получите окончательный ответ. Для этого перемножайте первые два числа, а затем полученный результат умножайте на следующее число в последовательности. Этот метод справедлив для любой степени. В нашем примере вы должны получить: 4 5 = 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 = 1024 {\displaystyle 4^{5}=4*4*4*4*4=1024} .
  2. Решите следующие задачи. Ответ проверьте при помощи калькулятора.

    • 8 2 {\displaystyle 8^{2}}
    • 3 4 {\displaystyle 3^{4}}
    • 10 7 {\displaystyle 10^{7}}
  3. На калькуляторе найдите клавишу, обозначенную как «exp», или « x n {\displaystyle x^{n}} », или «^». При помощи этой клавиши вы будете возводить число в степень. Вычислить степень с большим показателем вручную практически невозможно (например, степень 9 15 {\displaystyle 9^{15}} ), но калькулятор с легкостью справится с этой задачей. В Windows 7 стандартный калькулятор можно переключить в инженерный режим; для этого нажмите «Вид» –> «Инженерный». Для переключения в обычный режим нажмите «Вид» –> «Обычный».

    • Проверьте полученный ответ при помощи поисковой системы (Google или Яндекс) . Воспользовавшись клавишей «^» на клавиатуре компьютера, введите выражение в поисковик, который моментально отобразит правильный ответ (и, возможно, предложит аналогичные выражения для изучения).

    Сложение, вычитание, перемножение степеней

    1. Складывать и вычитать степени можно только в том случае, если у них одинаковые основания. Если нужно сложить степени с одинаковыми основаниями и показателями, то вы можете заменить операцию сложения операцией умножения. Например, дано выражение 4 5 + 4 5 {\displaystyle 4^{5}+4^{5}} . Помните, что степень 4 5 {\displaystyle 4^{5}} можно представить в виде 1 ∗ 4 5 {\displaystyle 1*4^{5}} ; таким образом, 4 5 + 4 5 = 1 ∗ 4 5 + 1 ∗ 4 5 = 2 ∗ 4 5 {\displaystyle 4^{5}+4^{5}=1*4^{5}+1*4^{5}=2*4^{5}} (где 1 +1 =2). То есть посчитайте число подобных степеней, а затем перемножьте такую степень и это число. В нашем примере возведите 4 в пятую степень, а затем полученный результат умножьте на 2. Помните, что операцию сложения можно заменить операцией умножения, например, 3 + 3 = 2 ∗ 3 {\displaystyle 3+3=2*3} . Вот другие примеры:

      • 3 2 + 3 2 = 2 ∗ 3 2 {\displaystyle 3^{2}+3^{2}=2*3^{2}}
      • 4 5 + 4 5 + 4 5 = 3 ∗ 4 5 {\displaystyle 4^{5}+4^{5}+4^{5}=3*4^{5}}
      • 4 5 − 4 5 + 2 = 2 {\displaystyle 4^{5}-4^{5}+2=2}
      • 4 x 2 − 2 x 2 = 2 x 2 {\displaystyle 4x^{2}-2x^{2}=2x^{2}}
    2. При перемножении степеней с одинаковым основанием их показатели складываются (основание не меняется). Например, дано выражение x 2 ∗ x 5 {\displaystyle x^{2}*x^{5}} . В этом случае нужно просто сложить показатели, оставив основание без изменений. Таким образом, x 2 ∗ x 5 = x 7 {\displaystyle x^{2}*x^{5}=x^{7}} . Вот наглядное объяснение этого правила:

      При возведении степени в степень показатели перемножаются. Например, дана степень . Так как показатели степени перемножаются, то (x 2) 5 = x 2 ∗ 5 = x 10 {\displaystyle (x^{2})^{5}=x^{2*5}=x^{10}} . Смысл этого правила в том, что вы умножаете степень (x 2) {\displaystyle (x^{2})} саму на себя пять раз. Вот так:

      • (x 2) 5 {\displaystyle (x^{2})^{5}}
      • (x 2) 5 = x 2 ∗ x 2 ∗ x 2 ∗ x 2 ∗ x 2 {\displaystyle (x^{2})^{5}=x^{2}*x^{2}*x^{2}*x^{2}*x^{2}}
      • Так как основание одно и то же, показатели степени просто складываются: (x 2) 5 = x 2 ∗ x 2 ∗ x 2 ∗ x 2 ∗ x 2 = x 10 {\displaystyle (x^{2})^{5}=x^{2}*x^{2}*x^{2}*x^{2}*x^{2}=x^{10}}
    3. Степень с отрицательным показателем следует преобразовать в дробь (в обратную степень). Не беда, если вы не знаете, что такое обратная степень. Если вам дана степень с отрицательным показателем, например, 3 − 2 {\displaystyle 3^{-2}} , запишите эту степень в знаменатель дроби (в числителе поставьте 1), а показатель сделайте положительным. В нашем примере: 1 3 2 {\displaystyle {\frac {1}{3^{2}}}} . Вот другие примеры:

      При делении степеней с одинаковым основанием их показатели вычитаются (основание при этом не меняется). Операция деления противоположна операции умножения. Например, дано выражение 4 4 4 2 {\displaystyle {\frac {4^{4}}{4^{2}}}} . Вычтите показатель степени, стоящей в знаменателе, из показателя степени, стоящей в числителе (основание не меняйте). Таким образом, 4 4 4 2 = 4 4 − 2 = 4 2 {\displaystyle {\frac {4^{4}}{4^{2}}}=4^{4-2}=4^{2}} = 16 .

      • Степень, стоящую в знаменателе, можно записать в таком виде: 1 4 2 {\displaystyle {\frac {1}{4^{2}}}} = 4 − 2 {\displaystyle 4^{-2}} . Помните, что дробь - это число (степень, выражение) с отрицательным показателем степени.
    4. Ниже приведены некоторые выражения, которые помогут вам научиться решать задачи со степенями. Приведенные выражения охватывают материал, изложенный в этом разделе. Для того, чтобы увидеть ответ, просто выделите пустое пространство после знака равенства.

    Решение задач с дробными показателями степени

      Степень с дробным показателем (например, ) преобразуется в операцию извлечения корня. В нашем примере: x 1 2 {\displaystyle x^{\frac {1}{2}}} = x {\displaystyle {\sqrt {x}}} . Здесь неважно, какое число стоит в знаменателе дробного показателя степени. Например, x 1 4 {\displaystyle x^{\frac {1}{4}}} - это корень четвертой степени из «х», то есть x 4 {\displaystyle {\sqrt[{4}]{x}}} .

    1. Если показатель степени представляет собой неправильную дробь, то такую степень можно разложить на две степени, чтобы упростить решение задачи. В этом нет ничего сложного - просто вспомните правило перемножения степеней. Например, дана степень . Превратите такую степень в корень, степень которого будет равна знаменателю дробного показателя, а затем возведите этот корень в степень, равную числителю дробного показателя. Чтобы сделать это, вспомните, что 5 3 {\displaystyle {\frac {5}{3}}} = (1 3) ∗ 5 {\displaystyle ({\frac {1}{3}})*5} . В нашем примере:

      • x 5 3 {\displaystyle x^{\frac {5}{3}}}
      • x 1 3 = x 3 {\displaystyle x^{\frac {1}{3}}={\sqrt[{3}]{x}}}
      • x 5 3 = x 5 ∗ x 1 3 {\displaystyle x^{\frac {5}{3}}=x^{5}*x^{\frac {1}{3}}} = (x 3) 5 {\displaystyle ({\sqrt[{3}]{x}})^{5}}
    2. На некоторых калькуляторах есть кнопка для вычисления степеней (сначала нужно ввести основание, затем нажать кнопку, а затем ввести показатель). Она обозначается как ^ или x^y.
    3. Помните, что любое число в первой степени равно самому себе, например, 4 1 = 4. {\displaystyle 4^{1}=4.} Более того, любое число, умноженное или разделенное на единицу, равно самому себе, например, 5 ∗ 1 = 5 {\displaystyle 5*1=5} и 5 / 1 = 5 {\displaystyle 5/1=5} .
    4. Знайте, что степени 0 0 не существует (такая степень не имеет решения). При попытке решить такую степень на калькуляторе или на компьютере вы получите ошибку. Но помните, что любое число в нулевой степени равно 1, например, 4 0 = 1. {\displaystyle 4^{0}=1.}
    5. В высшей математике, которая оперирует мнимыми числами: e a i x = c o s a x + i s i n a x {\displaystyle e^{a}ix=cosax+isinax} , где i = (− 1) {\displaystyle i={\sqrt {(}}-1)} ; е - константа, примерно равная 2,7; а - произвольная постоянная. Доказательство этого равенства можно найти в любом учебнике по высшей математике.
    6. Предупреждения

    • При увеличении показателя степени ее значение сильно возрастает. Поэтому если ответ кажется вам неправильным, на самом деле он может оказаться верным. Вы можете проверить это, построив график любой показательной функции, например, 2 x .

Одной из главных характеристик в алгебре, да и во всей математике является степень. Конечно, в 21 веке все расчеты можно проводить на онлайн-калькуляторе, но лучше для развития мозгов научиться делать это самому.

В данной статье рассмотрим самые важные вопросы, касающиеся этого определения. А именно, поймем что это вообще такое и каковы основные его функции, какие имеются свойства в математике.

Рассмотрим на примерах то, как выглядит расчет, каковы основные формулы. Разберем основные виды величины и то, чем они отличаются от других функций.

Поймем, как решать с помощью этой величины различные задачи. Покажем на примерах, как возводить в нулевую степень, иррациональную, отрицательную и др.

Онлайн-калькулятор возведения в степень

Что такое степень числа

Что же подразумевают под выражением «возвести число в степень»?

Степенью n числа а является произведение множителей величиной а n-раз подряд.

Математически это выглядит следующим образом:

a n = a * a * a * …a n .

Например:

  • 2 3 = 2 в третьей степ. = 2 * 2 * 2 = 8;
  • 4 2 = 4 в степ. два = 4 * 4 = 16;
  • 5 4 = 5 в степ. четыре = 5 * 5 * 5 * 5 = 625;
  • 10 5 = 10 в 5 степ. = 10 * 10 * 10 * 10 * 10 = 100000;
  • 10 4 = 10 в 4 степ. = 10 * 10 * 10 * 10 = 10000.

Ниже будет представлена таблица квадратов и кубов от 1 до 10.

Таблица степеней от 1 до 10

Ниже будут приведены результаты возведения натуральных чисел в положительные степени – «от 1 до 100».

Ч-ло 2-ая ст-нь 3-я ст-нь
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 279
10 100 1000

Свойства степеней

Что же характерно для такой математической функции? Рассмотрим базовые свойства.

Учеными установлено следующие признаки, характерные для всех степеней:

  • a n * a m = (a) (n+m) ;
  • a n: a m = (a) (n-m) ;
  • (a b) m =(a) (b*m) .

Проверим на примерах:

2 3 * 2 2 = 8 * 4 = 32. С другой стороны 2 5 = 2 * 2 * 2 * 2 * 2 =32.

Аналогично: 2 3: 2 2 = 8 / 4 =2. Иначе 2 3-2 = 2 1 =2.

(2 3) 2 = 8 2 = 64. А если по-другому? 2 6 = 2 * 2 * 2 * 2 * 2 * 2 = 32 * 2 = 64.

Как видим, правила работают.

А как же быть со сложением и вычитанием ? Всё просто. Выполняется сначала возведение в степень, а уж потом сложение и вычитание.

Посмотрим на примерах:

  • 3 3 + 2 4 = 27 + 16 = 43;
  • 5 2 – 3 2 = 25 – 9 = 16. Обратите внимание: правило не будет выполняться, если сначала произвести вычитание: (5 — 3) 2 = 2 2 = 4.

А вот в этом случае надо вычислять сначала сложение, поскольку присутствуют действия в скобках: (5 + 3) 3 = 8 3 = 512.

Как производить вычисления в более сложных случаях ? Порядок тот же:

  • при наличии скобок – начинать нужно с них;
  • затем возведение в степень;
  • потом выполнять действия умножения, деления;
  • после сложение, вычитание.

Есть специфические свойства, характерные не для всех степеней:

  1. Корень n-ой степени из числа a в степени m запишется в виде: a m / n .
  2. При возведении дроби в степень: этой процедуре подвержены как числитель, так и ее знаменатель.
  3. При возведении произведения разных чисел в степень, выражение будет соответствовать произведению этих чисел в заданной степени. То есть: (a * b) n = a n * b n .
  4. При возведении числа в отрицательную степ., нужно разделить 1 на число в той же ст-ни, но со знаком «+».
  5. Если знаменатель дроби находится в отрицательной степени, то это выражение будет равно произведению числителя на знаменатель в положительной степени.
  6. Любое число в степени 0 = 1, а в степ. 1 = самому себе.

Эти правила важны в отдельных случаях, их рассмотрим подробней ниже.

Степень с отрицательным показателем

Что делать при минусовой степени, т. е. когда показатель отрицательный?

Исходя из свойств 4 и 5 (смотри пункт выше), получается :

A (- n) = 1 / A n , 5 (-2) = 1 / 5 2 = 1 / 25.

И наоборот:

1 / A (- n) = A n , 1 / 2 (-3) = 2 3 = 8.

А если дробь?

(A / B) (- n) = (B / A) n , (3 / 5) (-2) = (5 / 3) 2 = 25 / 9.

Степень с натуральным показателем

Под ней понимают степень с показателями, равными целым числам.

Что нужно запомнить:

A 0 = 1, 1 0 = 1; 2 0 = 1; 3.15 0 = 1; (-4) 0 = 1…и т. д.

A 1 = A, 1 1 = 1; 2 1 = 2; 3 1 = 3…и т. д.

Кроме того, если (-a) 2 n +2 , n=0, 1, 2…то результат будет со знаком «+». Если отрицательное число возводится в нечетную степень, то наоборот.

Общие свойства, да и все специфические признаки, описанные выше, также характерны для них.

Дробная степень

Этот вид можно записать схемой: A m / n . Читается как: корень n-ой степени из числа A в степени m.

С дробным показателем можно делать, что угодно: сокращать, раскладывать на части, возводить в другую степень и т. д.

Степень с иррациональным показателем

Пусть α – иррациональное число, а А ˃ 0.

Чтобы понять суть степени с таким показателем, рассмотрим разные возможные случаи:

  • А = 1. Результат будет равен 1. Поскольку существует аксиома – 1 во всех степенях равна единице;

А r 1 ˂ А α ˂ А r 2 , r 1 ˂ r 2 – рациональные числа;

  • 0˂А˂1.

В этом случае наоборот: А r 2 ˂ А α ˂ А r 1 при тех же условиях, что и во втором пункте.

Например, показатель степени число π. Оно рациональное.

r 1 – в этом случае равно 3;

r 2 – будет равно 4.

Тогда, при А = 1, 1 π = 1.

А = 2, то 2 3 ˂ 2 π ˂ 2 4 , 8 ˂ 2 π ˂ 16.

А = 1/2, то (½) 4 ˂ (½) π ˂ (½) 3 , 1/16 ˂ (½) π ˂ 1/8.

Для таких степеней характерны все математические операции и специфические свойства, описанные выше.

Заключение

Подведём итоги — для чего же нужны эти величины, в чем преимущество таких функций? Конечно, в первую очередь они упрощают жизнь математиков и программистов при решении примеров, поскольку позволяют минимизировать расчеты, сократить алгоритмы, систематизировать данные и многое другое.

Где еще могут пригодиться эти знания? В любой рабочей специальности: медицине, фармакологии, стоматологии, строительстве, технике, инженерии, конструировании и т. д.


В продолжение разговора про степень числа логично разобраться с нахождением значения степени. Этот процесс получил название возведение в степень . В этой статье мы как раз изучим, как выполняется возведение в степень, при этом затронем все возможные показатели степени – натуральный, целый, рациональный и иррациональный. И по традиции подробно рассмотрим решения примеров возведения чисел в различные степени.

Навигация по странице.

Что значит «возведение в степень»?

Начать следует с объяснения, что называют возведением в степень. Вот соответствующее определение.

Определение.

Возведение в степень – это нахождение значения степени числа.

Таким образом, нахождение значение степени числа a с показателем r и возведение числа a в степень r – это одно и то же. Например, если поставлена задача «вычислите значение степени (0,5) 5 », то ее можно переформулировать так: «Возведите число 0,5 в степень 5 ».

Теперь можно переходить непосредственно к правилам, по которым выполняется возведение в степень.

Возведение числа в натуральную степень

На практике равенство на основании обычно применяется в виде . То есть, при возведении числа a в дробную степень m/n сначала извлекается корень n -ой степени из числа a , после чего полученный результат возводится в целую степень m .

Рассмотрим решения примеров возведения в дробную степень.

Пример.

Вычислите значение степени .

Решение.

Покажем два способа решения.

Первый способ. По определению степени с дробным показателем . Вычисляем значение степени под знаком корня, после чего извлекаем кубический корень: .

Второй способ. По определению степени с дробным показателем и на основании свойств корней справедливы равенства . Теперь извлекаем корень , наконец, возводим в целую степень .

Очевидно, что полученные результаты возведения в дробную степень совпадают.

Ответ:

Отметим, что дробный показатель степени может быть записан в виде десятичной дроби или смешанного числа, в этих случаях его следует заменить соответствующей обыкновенной дробью, после чего выполнять возведение в степень.

Пример.

Вычислите (44,89) 2,5 .

Решение.

Запишем показатель степени в виде обыкновенной дроби (при необходимости смотрите статью ): . Теперь выполняем возведение в дробную степень:

Ответ:

(44,89) 2,5 =13 501,25107 .

Следует также сказать, что возведение чисел в рациональные степени является достаточно трудоемким процессом (особенно когда в числителе и знаменателе дробного показателя степени находятся достаточно большие числа), который обычно проводится с использованием вычислительной техники.

В заключение этого пункта остановимся на возведении числа нуль в дробную степень. Дробной степени нуля вида мы придали следующий смысл: при имеем , а при нуль в степени m/n не определен. Итак, нуль в дробной положительной степени равен нулю, например, . А нуль в дробной отрицательной степени не имеет смысла, к примеру, не имеют смысла выражения и 0 -4,3 .

Возведение в иррациональную степень

Иногда возникает необходимость узнать значение степени числа с иррациональным показателем . При этом в практических целях обычно достаточно получить значение степени с точностью до некоторого знака. Сразу отметим, что это значение на практике вычисляется с помощью электронной вычислительной техники, так как возведение в иррациональную степень вручную требует большого количества громоздких вычислений. Но все же опишем в общих чертах суть действий.

Чтобы получить приближенное значение степени числа a с иррациональным показателем , берется некоторое десятичное приближение показателя степени , и вычисляется значение степени . Это значение и является приближенным значением степени числа a с иррациональным показателем . Чем более точное десятичное приближение числа будет взято изначально, тем более точное значение степени будет получено в итоге.

В качестве примера вычислим приближенное значение степени 2 1,174367... . Возьмем следующее десятичное приближение иррационального показателя: . Теперь возведем 2 в рациональную степень 1,17 (суть этого процесса мы описали в предыдущем пункте), получаем 2 1,17 ≈2,250116 . Таким образом, 2 1,174367... ≈2 1,17 ≈2,250116 . Если взять более точное десятичное приближение иррационального показателя степени, например, , то получим более точное значение исходной степени: 2 1,174367... ≈2 1,1743 ≈2,256833 .

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. МатематикаЖ учебник для 5 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 7 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 9 кл. общеобразовательных учреждений.
  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

В этой статье мы разберемся, что такое степень числа . Здесь мы дадим определения степени числа, при этом подробно рассмотрим все возможные показатели степени, начиная с натурального показателя, заканчивая иррациональным. В материале Вы найдете массу примеров степеней, покрывающих все возникающие тонкости.

Навигация по странице.

Степень с натуральным показателем, квадрат числа, куб числа

Для начала дадим . Забегая вперед, скажем, что определение степени числа a с натуральным показателем n дается для a , которое будем называть основанием степени , и n , которое будем называть показателем степени . Также отметим, что степень с натуральным показателем определяется через произведение, так что для понимания нижеизложенного материала нужно иметь представление об умножении чисел.

Определение.

Степень числа a с натуральным показателем n - это выражение вида a n , значение которого равно произведению n множителей, каждый из которых равен a , то есть, .
В частности, степенью числа a с показателем 1 называется само число a , то есть, a 1 =a .

Сразу стоит сказать о правилах чтения степеней. Универсальный способ чтения записи a n таков: «a в степени n ». В некоторых случаях также допустимы такие варианты: «a в n -ой степени» и «n -ая степень числа a ». Для примера возьмем степень 8 12 , это «восемь в степени двенадцать», или «восемь в двенадцатой степени», или «двенадцатая степень восьми».

Вторая степень числа, а также третья степень числа имеют свои названия. Вторую степень числа называют квадратом числа , например, 7 2 читается как «семь в квадрате» или «квадрат числа семь». Третья степень числа называется кубом числа , к примеру, 5 3 можно прочитать как «пять в кубе» или сказать «куб числа 5 ».

Пришло время привести примеры степеней с натуральными показателями . Начнем со степени 5 7 , здесь 5 – основание степени, а 7 – показатель степени. Приведем еще пример: 4,32 является основанием, а натуральное число 9 – показателем степени (4,32) 9 .

Обратите внимание, что в последнем примере основание степени 4,32 записано в скобках: чтобы избежать разночтений мы будем брать в скобки все основания степени, которые отличны от натуральных чисел. В качестве примера приведем следующие степени с натуральными показателями , их основания не являются натуральными числами, поэтому они записаны в скобках. Ну и для полной ясности в этом моменте покажем разницу, заключенную в записях вида (−2) 3 и −2 3 . Выражение (−2) 3 – это степень −2 с натуральным показателем 3, а выражение −2 3 (его можно записать как −(2 3) ) соответствует числу, значению степени 2 3 .

Заметим, что встречается обозначение степени числа a с показателем n вида a^n . При этом, если n – многозначное натуральное число, то показатель степени берется в скобки. Например, 4^9 – это другая запись степени 4 9 . А вот еще примеры записи степеней при помощи символа «^ »: 14^(21) , (−2,1)^(155) . В дальнейшем мы преимущественно будем пользоваться обозначением степени вида a n .

Одной из задач, обратной возведению в степень с натуральным показателем, является задача нахождения основания степени по известному значению степени и известному показателю. Эта задача приводит к .

Известно, что множество рациональных чисел состоит из целых и дробных чисел, причем каждое дробное число может быть представлено в виде положительной или отрицательной обыкновенной дроби. Степень с целым показателем мы определили в предыдущем пункте, поэтому, чтобы закончить определение степени с рациональным показателем, нужно придать смысл степени числа a с дробным показателем m/n , где m – целое число, а n - натуральное. Сделаем это.

Рассмотрим степень с дробным показателем вида . Чтобы сохраняло силу свойство степени в степени, должно выполняться равенство . Если учесть полученное равенство и то, как мы определили , то логично принять при условии, что при данных m , n и a выражение имеет смысл.

Несложно проверить, что при справедливы все свойства степени с целым показателем (это сделано в разделе свойства степени с рациональным показателем).

Приведенные рассуждения позволяют сделать следующий вывод : если при данных m , n и a выражение имеет смысл, то степенью числа a с дробным показателем m/n называют корень n -ой степени из a в степени m .

Это утверждение вплотную подводит нас к определению степени с дробным показателем. Остается лишь расписать, при каких m , n и a имеет смысл выражение . В зависимости от ограничений, накладываемых на m , n и a существуют два основных подхода.

    Проще всего наложить ограничение на a , приняв a≥0 для положительных m и a>0 для отрицательных m (так как при m≤0 степень 0 m не определена). Тогда мы получаем следующее определение степени с дробным показателем.

    Определение.

    Степенью положительного числа a с дробным показателем m/n , где m – целое, а n – натуральное число, называется корень n -ой из числа a в степени m , то есть, .

    Также определяется дробная степень нуля с той лишь оговоркой, что показатель должен быть положительным.

    Определение.

    Степень нуля с дробным положительным показателем m/n , где m – целое положительное, а n – натуральное число, определяется как .
    При степень не определяется, то есть, степень числа нуль с дробным отрицательным показателем не имеет смысла.

    Следует отметить, что при таком определении степени с дробным показателем существует один нюанс: при некоторых отрицательных a и некоторых m и n выражение имеет смысл, а мы отбросили эти случаи, введя условие a≥0 . Например, имеют смысл записи или , а данное выше определение заставляет нас говорить, что степени с дробным показателем вида не имеют смысла, так как основание не должно быть отрицательным.

    Другой подход к определению степени с дробным показателем m/n заключается в раздельном рассмотрении четных и нечетных показателях корня . Этот подход требует дополнительного условия: степень числа a , показателем которой является , считается степенью числа a , показателем которой является соответствующая несократимая дробь (важность этого условия поясним чуть ниже). То есть, если m/n – несократимая дробь, то для любого натурального числа k степень предварительно заменяется на .

    При четных n и положительных m выражение имеет смысл при любом неотрицательном a (корень четной степени из отрицательного числа не имеет смысла), при отрицательных m число a должно быть еще отличным от нуля (иначе будет деление на нуль). А при нечетных n и положительных m число a может быть любым (корень нечетной степени определен для любого действительного числа), а при отрицательных m число a должно быть отличным от нуля (чтобы не было деления на нуль).

    Приведенные рассуждения приводят нас к такому определению степени с дробным показателем.

    Определение.

    Пусть m/n – несократимая дробь, m – целое, а n – натуральное число. Для любой сократимой обыкновенной дроби степень заменяется на . Степень числа a с несократимым дробным показателем m/n - это для

    Поясним, зачем степень с сократимым дробным показателем предварительно заменяется степенью с несократимым показателем. Если бы мы просто определили степень как , и не оговорились о несократимости дроби m/n , то мы бы столкнулись с ситуациями, подобными следующей: так как 6/10=3/5 , то должно выполняться равенство , но , а .

В рамках этого материала мы разберем, что такое степень числа. Помимо основных определений мы сформулируем, что такое степени с натуральными, целыми, рациональными и иррациональными показателями. Как всегда, все понятия будут проиллюстрированы примерами задач.

Yandex.RTB R-A-339285-1

Сначала сформулируем базовое определение степени с натуральным показателем. Для этого нам понадобится вспомнить основные правила умножения. Заранее уточним, что в качестве основания будем пока брать действительное число (обозначим его буквой a), а в качестве показателя – натуральное (обозначим буквой n).

Определение 1

Степень числа a с натуральным показателем n – это произведение n -ного числа множителей, каждый из которых равен числу а. Записывается степень так: a n , а в виде формулы ее состав можно представить следующим образом:

Например, если показатель степени равен 1 , а основание – a , то первая степень числа a записывается как a 1 . Учитывая, что a – это значение множителя, а 1 – число множителей, мы можем сделать вывод, что a 1 = a .

В целом можно сказать, что степень – это удобная форма записи большого количества равных множителей. Так, запись вида 8 · 8 · 8 · 8 можно сократить до 8 4 . Примерно так же произведение помогает нам избежать записи большого числа слагаемых (8 + 8 + 8 + 8 = 8 · 4) ; мы это уже разбирали в статье, посвященной умножению натуральных чисел.

Как же верно прочесть запись степени? Общепринятый вариант – « a в степени n ». Или можно сказать « n -ная степень a » либо « a n -ной степени». Если, скажем, в примере встретилась запись 8 12 , мы можем прочесть « 8 в 12 -й степени», « 8 в степени 12 » или « 12 -я степень 8 -ми».

Вторая и третья степени числа имеют свои устоявшиеся названия: квадрат и куб. Если мы видим вторую степень, например, числа 7 (7 2) , то мы можем сказать « 7 в квадрате» или «квадрат числа 7 ». Аналогично третья степень читается так: 5 3 – это «куб числа 5 » или « 5 в кубе». Впрочем, употреблять стандартную формулировку «во второй/третьей степени» тоже можно, это не будет ошибкой.

Пример 1

Разберем пример степени с натуральным показателем: для 5 7 пятерка будет основанием, а семерка – показателем.

В основании не обязательно должно стоять целое число: для степени (4 , 32) 9 основанием будет дробь 4 , 32 , а показателем – девятка. Обратите внимание на скобки: такая запись делается для всех степеней, основания которых отличаются от натуральных чисел.

Например: 1 2 3 , (- 3) 12 , - 2 3 5 2 , 2 , 4 35 5 , 7 3 .

Для чего нужны скобки? Они помогают избежать ошибок в расчетах. Скажем, у нас есть две записи: (− 2) 3 и − 2 3 . Первая из них означает отрицательное число минус два, возведенное в степень с натуральным показателем три; вторая – число, соответствующее противоположному значению степени 2 3 .

Иногда в книгах можно встретить немного другое написание степени числа – a ^ n (где а – основание, а n - показатель). То есть 4 ^ 9 – это то же самое, что и 4 9 . В случае, если n представляет собой многозначное число, оно берется в скобки. Например, 15 ^ (21) , (− 3 , 1) ^ (156) . Но мы будем использовать обозначение a n как более употребительное.

О том, как вычислить значение степени с натуральным показателем, легко догадаться из ее определения: нужно просто перемножить a n -ное число раз. Подробнее об этом мы писали в другой статье.

Понятие степени является обратным другому математическому понятию – корню числа. Если мы знаем значение степени и показатель, мы можем вычислить ее основание. Степень обладает некоторыми специфическими свойствами, полезными для решения задач, которые мы разобрали в рамках отдельного материала.

В показателях степени могут стоять не только натуральные числа, но и вообще любые целые значения, в том числе отрицательные и нули, ведь они тоже принадлежат к множеству целых чисел.

Определение 2

Степень числа с целым положительным показателем можно отобразить в виде формулы: .

При этом n – любое целое положительное число.

Разберемся с понятием нулевой степени. Для этого мы используем подход, учитывающий свойство частного для степеней с равными основаниями. Оно формулируется так:

Определение 3

Равенство a m: a n = a m − n будет верно при условиях: m и n – натуральные числа, m < n , a ≠ 0 .

Последнее условие важно, поскольку позволяет избежать деления на ноль. Если значения m и n равны, то мы получим следующий результат: a n: a n = a n − n = a 0

Но при этом a n: a n = 1 - частное равных чисел a n и a . Выходит, что нулевая степень любого отличного от нуля числа равна единице.

Однако такое доказательство не подходит для нуля в нулевой степени. Для этого нам нужно другое свойство степеней – свойство произведений степеней с равными основаниями. Оно выглядит так: a m · a n = a m + n .

Если n у нас равен 0 , то a m · a 0 = a m (такое равенство также доказывает нам, что a 0 = 1 ). Но если а также равно нулю, наше равенство приобретает вид 0 m · 0 0 = 0 m , Оно будет верным при любом натуральном значении n , и неважно при этом, чему именно равно значение степени 0 0 , то есть оно может быть равно любому числу, и на верность равенства это не повлияет. Следовательно, запись вида 0 0 своего особенного смысла не имеет, и мы не будем ему его приписывать.

При желании легко проверить, что a 0 = 1 сходится со свойством степени (a m) n = a m · n при условии, что основание степени не равно нулю. Таким образом, степень любого отличного от нуля числа с нулевым показателем равна единице.

Пример 2

Разберем пример с конкретными числами: Так, 5 0 - единица, (33 , 3) 0 = 1 , - 4 5 9 0 = 1 , а значение 0 0 не определено.

После нулевой степени нам осталось разобраться, что из себя представляет степень отрицательная. Для этого нам понадобится то же свойство произведения степеней с равными основаниями, которое мы уже использовали выше: a m · a n = a m + n .

Введем условие: m = − n , тогда a не должно быть равно нулю. Из этого следует, что a − n · a n = a − n + n = a 0 = 1 . Выходит, что a n и a − n у нас являются взаимно обратными числами.

В итоге a в целой отрицательной степени есть не что иное, как дробь 1 a n .

Такая формулировка подтверждает, что для степени с целым отрицательным показателем действительны все те же свойства, которыми обладает степень с натуральным показателем (при условии, что основание не равно нулю).

Пример 3

Степень a с целым отрицательным показателем n можно представить в виде дроби 1 a n . Таким образом, a - n = 1 a n при условии a ≠ 0 и n – любое натуральное число.

Проиллюстрируем нашу мысль конкретными примерами:

Пример 4

3 - 2 = 1 3 2 , (- 4 . 2) - 5 = 1 (- 4 . 2) 5 , 11 37 - 1 = 1 11 37 1

В последней части параграфа попробуем изобразить все сказанное наглядно в одной формуле:

Определение 4

Степень числа a с натуральным показателем z ​​ – это: a z = a z , e с л и z - ц е л о е п о л о ж и т е л ь н о е ч и с л о 1 , z = 0 и a ≠ 0 , (п р и z = 0 и a = 0 п о л у ч а е т с я 0 0 , з н а ч е н и я в ы р а ж е н и я 0 0 н е о п р е д е л я е т с я)   1 a z , е с л и z - ц е л о е о т р и ц а т е л ь н о е ч и с л о и a ≠ 0 (е с л и z - ц е л о е о т р и ц а т е л ь н о е ч и с л о и a = 0 п о л у ч а е т с я 0 z , е г о з н а ч е н и е н е о п р е д е л я е т с я)

Что такое степени с рациональным показателем

Мы разобрали случаи, когда в показателе степени стоит целое число. Однако возвести число в степень можно и тогда, когда в ее показателе стоит дробное число. Это называется степенью с рациональным показателем. В этом пункте мы докажем, что она обладает теми же свойствами, что и другие степени.

Что такое рациональные числа? В их множество входят как целые, так и дробные числа, при этом дробные числа можно представить в виде обыкновенных дробей (как положительных, так и отрицательных). Сформулируем определение степени числа a с дробным показателем m / n , где n – натуральное число, а m – целое.

У нас есть некоторая степень с дробным показателем a m n . Для того, чтобы свойство степени в степени выполнялось, равенство a m n n = a m n · n = a m должно быть верным.

Учитывая определение корня n -ной степени и что a m n n = a m , мы можем принять условие a m n = a m n , если a m n имеет смысл при данных значениях m , n и a .

Приведенные выше свойства степени с целым показателем будут верными при условии a m n = a m n .

Основной вывод из наших рассуждений таков: степень некоторого числа a с дробным показателем m / n – это корень n -ой степени из числа a в степени m . Это справедливо в том случае, если при данных значениях m , n и a выражение a m n сохраняет смысл.

1. Мы можем ограничить значение основания степени: возьмем a , которое при положительных значениях m будет больше или равно 0 , а для отрицательных – строго меньше (поскольку при m ≤ 0 мы получаем 0 m , а такая степень не определена). В таком случае определение степени с дробным показателем будет выглядеть следующим образом:

Степень с дробным показателем m / n для некоторого положительного числа a есть корень n -ной степени из a, возведенного в степень m . В виде формулы это можно изобразить так:

Для степени с нулевым основанием это положение также подходит, но только в том случае, если ее показатель – положительное число.

Степень с нулевым основанием и дробным положительным показателем m / n можно выразить как

0 m n = 0 m n = 0 при условии целого положительного m и натурального n .

При отрицательном отношении m n < 0 степень не определяется, т.е. такая запись смысла не имеет.

Отметим один момент. Поскольку мы ввели условие, что a больше или равно нулю, то у нас оказались отброшены некоторые случаи.

Выражение a m n иногда все же имеет смысл при некоторых отрицательных значениях a и некоторых m . Так, верны записи (- 5) 2 3 , (- 1 , 2) 5 7 , - 1 2 - 8 4 , в которых основание отрицательно.

2. Второй подход – это рассмотреть отдельно корень a m n с четными и нечетными показателями. Тогда нам потребуется ввести еще одно условие: степень a , в показателе которой стоит сократимая обыкновенная дробь, считается степенью a , в показателе которой стоит соответствующая ей несократимая дробь. Позже мы объясним, для чего нам это условие и почему оно так важно. Таким образом, если у нас есть запись a m · k n · k , то мы можем свести ее к a m n и упростить расчеты.

Если n – нечетное число, а значение m – положительно, a – любое неотрицательное число, то a m n имеет смысл. Условие неотрицательного a нужно, поскольку корень четной степени из отрицательного числа не извлекают. Если же значение m положительно, то a может быть и отрицательным, и нулевым, т.к. корень нечетной степени можно извлечь из любого действительного числа.

Объединим все данные выше определения в одной записи:

Здесь m/n означает несократимую дробь, m – любое целое число, а n – любое натуральное число.

Определение 5

Для любой обыкновенной сократимой дроби m · k n · k степень можно заменить на a m n .

Степень числа a с несократимым дробным показателем m / n – можно выразить в виде a m n в следующих случаях: - для любых действительных a , целых положительных значений m и нечетных натуральных значений n . Пример: 2 5 3 = 2 5 3 , (- 5 , 1) 2 7 = (- 5 , 1) - 2 7 , 0 5 19 = 0 5 19 .

Для любых отличных от нуля действительных a , целых отрицательных значений m и нечетных значений n , например, 2 - 5 3 = 2 - 5 3 , (- 5 , 1) - 2 7 = (- 5 , 1) - 2 7

Для любых неотрицательных a , целых положительных значений m и четных n , например, 2 1 4 = 2 1 4 , (5 , 1) 3 2 = (5 , 1) 3 , 0 7 18 = 0 7 18 .

Для любых положительных a , целых отрицательных m и четных n , например, 2 - 1 4 = 2 - 1 4 , (5 , 1) - 3 2 = (5 , 1) - 3 , .

В случае других значений степень с дробным показателем не определяется. Примеры таких степеней: - 2 11 6 , - 2 1 2 3 2 , 0 - 2 5 .

Теперь объясним важность условия, о котором говорили выше: зачем заменять дробь с сократимым показателем на дробь с несократимым. Если бы мы этого не сделали бы, то получились бы такие ситуации, скажем, 6 / 10 = 3 / 5 . Тогда должно быть верным (- 1) 6 10 = - 1 3 5 , но - 1 6 10 = (- 1) 6 10 = 1 10 = 1 10 10 = 1 , а (- 1) 3 5 = (- 1) 3 5 = - 1 5 = - 1 5 5 = - 1 .

Определение степени с дробным показателем, которое мы привели первым, удобнее применять на практике, чем второе, поэтому мы будем далее пользоваться именно им.

Определение 6

Таким образом, степень положительного числа a с дробным показателем m / n определяется как 0 m n = 0 m n = 0 . В случае отрицательных a запись a m n не имеет смысла. Степень нуля для положительных дробных показателей m / n определяется как 0 m n = 0 m n = 0 , для отрицательных дробных показателей мы степень нуля не определяем.

В выводах отметим, что можно записать любой дробный показатель как в виде смешанного числа, так и в виде десятичной дроби: 5 1 , 7 , 3 2 5 - 2 3 7 .

При вычислении же лучше заменять показатель степени обыкновенной дробью и далее пользоваться определением степени с дробным показателем. Для примеров выше у нас получится:

5 1 , 7 = 5 17 10 = 5 7 10 3 2 5 - 2 3 7 = 3 2 5 - 17 7 = 3 2 5 - 17 7

Что такое степени с иррациональным и действительным показателем

Что такое действительные числа? В их множество входят как рациональные, так и иррациональные числа. Поэтому для того, чтобы понять, что такое степень с действительным показателем, нам надо определить степени с рациональными и иррациональными показателями. Про рациональные мы уже упоминали выше. Разберемся с иррациональными показателями пошагово.

Пример 5

Допустим, что у нас есть иррациональное число a и последовательность его десятичных приближений a 0 , a 1 , a 2 , . . . . Например, возьмем значение a = 1 , 67175331 . . . , тогда

a 0 = 1 , 6 , a 1 = 1 , 67 , a 2 = 1 , 671 , . . . , a 0 = 1 , 67 , a 1 = 1 , 6717 , a 2 = 1 , 671753 , . . .

Последовательности приближений мы можем поставить в соответствие последовательность степеней a a 0 , a a 1 , a a 2 , . . . . Если вспомнить, что мы рассказывали ранее о возведении чисел в рациональную степень, то мы можем сами подсчитать значения этих степеней.

Возьмем для примера a = 3 , тогда a a 0 = 3 1 , 67 , a a 1 = 3 1 , 6717 , a a 2 = 3 1 , 671753 , . . . и т.д.

Последовательность степеней можно свести к числу, которое и будет значением степени c основанием a и иррациональным показателем a . В итоге: степень с иррациональным показателем вида 3 1 , 67175331 . . можно свести к числу 6 , 27 .

Определение 7

Степень положительного числа a с иррациональным показателем a записывается как a a . Его значение – это предел последовательности a a 0 , a a 1 , a a 2 , . . . , где a 0 , a 1 , a 2 , . . . являются последовательными десятичными приближениями иррационального числа a . Степень с нулевым основанием можно определить и для положительных иррациональных показателей, при этом 0 a = 0 Так, 0 6 = 0 , 0 21 3 3 = 0 . А для отрицательных этого сделать нельзя, поскольку, например, значение 0 - 5 , 0 - 2 π не определено. Единица, возведенная в любую иррациональную степень, остается единицей, например, и 1 2 , 1 5 в 2 и 1 - 5 будут равны 1 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter