Меню
Бесплатно
Главная  /  Фазы менструального цикла  /  Большой геологический круговорот веществ в природе обусловлен. Большой геологический круговорот веществ

Большой геологический круговорот веществ в природе обусловлен. Большой геологический круговорот веществ

Чтобы биосфера продолжала существовать, чтобы движение (развитие) ее не прекращалось, на Земле постоянно должен происходить круговорот биологически важных веществ. Этот переход биологически важных веществ из звена в звено может осуществляться только при определенных затратах энергии, источником которой является Солнце.

Солнечная энергия обеспечивает на Земле два круговорота веществ:

- геологический (абиотический), или большой, круговорот;

- биологический (биотический), или малый, круговорот.

Геологический круговорот наиболее четко проявлятся в круговороте воды и циркуляции атмосферы.

На Землю от Солнца ежегодно поступает примерно 21 10 20 кДж лучистой энергии. Около половины ее расходуется на испарение воды. Это и обусловливает большой круговорот.

Круговорот воды в биосфере основан на том, что суммарное ее испарение с поверхности Земли компенсируется выпадением осадков. При этом из океана испаряется воды больше, чем возвращается с осадками. На суше, наоборот, больше выпадает осадков, чем испаряется воды. Излишки ее стекают в реки и озера, а оттуда - снова в океан.

В процессе геологического круговорота воды с одного места в другое в масштабе всей планеты переносятся минеральные соединения, а также изменяется агрегатное состояние воды (жидкая, твердая - снег, лед; газообразная - пары). Наиболее интенсивно вода циркулирует в парообразном состоянии.

С появлением живого вещества на основе круговорота атмосферы, воды, растворенных в ней минеральных соединений, т.е. на базе абиотического, геологического круговорота возник круговорот органического вещества, или малый, биологический круговорот .

По мере развития живой материи из геологического круговорота постоянно извлекается все больше элементов, которые вступают в новый, биологический круговорот.

В отличие от простого переноса-перемещения минеральных элементов в большом (геологическом) круговороте, в малом (биологическом) круговороте самыми важными моментами являются синтез и разрушение органических соединений. Эти два процесса находятся в определенном соотношении, что лежит в основе жизни и составляет одну из главных ее особенностей.

В противоположность геологическому, биологический круговорот обладает более низкой энергией. На создание органического вещества, как известно, затрачивается всего 0,1-0,2%, падающей на Землю солнечной энергии (на геологический круговорот - до 50%). Несмотря на это энергия, вовлеченная в биологический круговорот, затрачивается на огромную работу по созиданию на Земле первичной продукции.

С появлением на Земле живой материи химические элементы беспрерывно циркулируют в биосфере, переходя из внешней среды в организмы и обратно во внешнюю среду.

Такая циркуляция химических элементов по более или менее замкнутым путям, протекающая с использованием солнечной энергии через живые организмы, называется биогеохимическим круговоротом (циклом).

Основными биогеохимическими циклами являются круговороты кислорода, углерода, азота, фосфора, серы, воды и биогенных элементов.

Круговорот углерода.

На суше круговорот углерода начинается с фиксации углекислого газа растениями в процессе фотосинтеза. Далее из углекислого газа и воды образуются углеводы и высвобождается кислород. При этом углерод частично выделяется во время дыхания растений в составе углекислого газа. Фиксированный в растениях углерод в некоторой степени потребляется животными. Животные при дыхании также выделяют углекислый газ. Отжившие животные и растения разлагаются микроорганизмами, в результате чего углерод мертвого органического вещества окисляется до углекислого газа и снова попадает в атмосферу.

Подобный круговорот углерода совершается и в океане.

Круговорот азота.

Круговорот азота, как и другие биогеохимические циклы, охватывает все области биосферы. Круговорот азота связан с его превращением в нитраты за счет деятельности азотфиксирующих и нитрифицирующих бактерий. Нитраты усваиваются растениями из почвы или воды. Растения поедаются животными. В конце концов редуценты вновь переводят азот в газообразную форму и возвращают его в атмосферу.

В современных условиях в круговорот азота вмешался человек, который выращивая на обширных площадях азотфиксирующие бобовые растения, искусственно связывает природный азот. Считается, что сельское хозяйство и промышленность дают почти на 60% больше фиксированного азота, чем естественные наземные экосистемы.

Подобный круговорот азота наблюдается и в водной среде.

Круговорот фосфора.

В отличие от углерода и азота соединения фосфора находятся в горных породах, которые подвергаются эрозии и высвобождают фосфаты. Большая часть их попадает в моря и океаны и частично вновь может быть возвращена на сушу через морские пищевые цепи, заканчивающиеся рыбоядными птицами. Некоторая часть фосфатов попадает в почву и поглощается корнями растений. Усвоение фосфора растениями зависит от кислотности почвенного раствора: по мере повышения кислотности практически нерастворимые в воде фосфаты превращаются в хорошо растворимую фосфорную кислоту. Далее растения поедаются животными.

Основными звеньями биогеохимических циклов выступают различные организмы, многообразие форм которых обусловливает интенсивность протекания круговоротов и вовлечение в них практически всех элементов земной коры.

В целом каждый круговорот любого химического элемента является частью общего грандиозного круговорота веществ на Земле, т.е. они тесно связаны между собой.

Круговорот веществ в природе - повторяющийся циклический процесс превращения и перемещения отдельных химических элементов и их соединений. Происходил в течение всей истории развития Земли и продолжается в настоящее время. Всегда имеет место определённое отклонение в составе и количестве циркулирующего вещества, поэтому в природе нет полного повторения цикла. Это определяет поступательное развитие Земли как планеты. Особенно характерен круговорот веществ для геологической стадии развития, когда формировались осн. оболочки Земли. По масштабу проявления на первом месте находится геологический круговорот . Он представляет собой движение вещества по преимуществу во внутренних оболочках: подъём в результате восходящих тектонических движений и вулканизма; перенос его по горизонтали во внешних оболочках и аккумуляция; нисходящие движения - захоронение осадков, погружение в результате нисходящих тектонических движений. На глубине происходит метаморфизм, плавление вещества с образованием магмы и метаморфических горных пород. Основополагающую роль в создании географической оболочки играет круговорот воды .

Со времени появления жизни на Земле начался биологический круговорот . Он обеспечивает непрерывные превращения, в результате которых вещества после использования одними организмами переходят в усвояемую для других организмов форму. Энергетической основой является поступающая на Землю солнечная энергия. Растительные организмы поглощают минеральные вещества, которые через пищевые цепи попадают в организм животных, затем с помощью редуцентов (бактерий, грибов и др.) возвращаются в почву или атмосферу. От интенсивности этого круговорота зависит количество и разнообразие живых организмов на Земле и объём накапливаемой ими биомассы . Макс. интенсивность биологического круговорота на суше наблюдается во влажных тропических лесах, где растительные остатки почти не накапливаются и высвобождающиеся минеральные вещества сразу же поглощаются растениями. Весьма низка интенсивность круговорота в болотах и тундре, где не успевающие разложиться остатки растений накапливаются. Особое значение имеют круговороты биогенных химических элементов, прежде всего углерода . Растительные организмы извлекают из атмосферы до 300 млрд. т углекислого газа (или 100 млрд. т углерода) ежегодно. Растения частично поедаются животными, частично отмирают. Органическое вещество в результате дыхания организмов, разложения их остатков, процессов брожения и гниения превращается в углекислый газ или отлагается в виде сапропеля, гумуса, торфа, из которых в дальнейшем образуются угли, нефть, горючий газ. В активном круговороте углерода участвует очень небольшая его часть, значительное количество законсервировано в виде горючих ископаемых известняков и других горных пород. Осн. масса азота сосредоточена в атмосфере (3,8510№? т); в водах Мирового океана его содержится 2510№і т. В круговороте азота ведущая роль принадлежит микроорганизмам: азотофиксаторам, нитрификаторам и денитрификаторам. Ежегодно на суше в круговорот вовлекается ок. 4510? т азота, в водной среде в 4 раза меньше. Азотосодержащие соединения из отмерших остатков преобразуются нитрифицирующими микроорганизмами в оксиды азота, которые впоследствии разлагаются денитрифицирующими бактериями с выделением молекулярного азота. С живым веществом связаны также круговороты кислорода , фосфора , серы и многих других элементов. Последствия воздействия человека на круговорот веществ становятся всё значительнее. Они стали сравнимы с результатами геологических процессов: в биосфере возникают новые пути миграции веществ, появляются новые химические соединения, которых не было прежде, меняется круговорот воды.

К эндогенным процессам относятся: магматизм, метаморфизм (действие высо­ких температур и давления), вулканизм, движение земной коры (землетрясения, го­рообразования).

К экзогенным – выветривание, деятельность атмосферных и поверхностных вод морей, океанов, животных, растительных организмов и особенно человека – техногенез.

Взаимодействие внутренних и внешних процессов образует большой геологи­ческий круговорот веществ .

При эндогенных процессах образуются горные системы, возвышенности, океанические впадины, при экзогенных – происходит разрушение магматических горных пород, перемещение продуктов разрушения в реки, моря, океаны и формирование осадоч­ных пород. В результате движения земной коры осадочные породы погружаются в глубокие слои, подвергаются процессам метаморфизма (действию высоких темпера­тур и давления), образуются метаморфические породы. В более глубоких слоях они пе­реходят в расплавленное …
состояние (магматизация). Затем, в результате вулканиче­ских процессов, поступают в верхние слои литосферы, на ее поверхность в виде магматических пород. Так образуются почвообразующие породы и различные формы рельефа.

Горные породы , из которых формируется почва, называются почвообразую­щими или материнскими. По условиям образования они подразделяются на три группы: магматические, метаморфические и осадочные.

Магматические горные породы состоят из соединений кремния, Al, Fe, Mg, Ca, K, Na. В зависимости от соотношения этих соединений различают кислые и ос­новные породы.

Кислые (граниты, липариты, пегматиты) имеют высокое содержание кремне­зема (более 63%), оксидов калия и натрия (7-8%), оксидов кальция и Mg (2-3%). Они имеют светлую и бурую окраску. Почвы, образующиеся из таких пород, имеют рыхлое сложение, повышенную кислотность и малоплодородны.

Основные магматические породы (базальты, дуниты, периодиты) характери­зуются низким содержанием SiO 2 (40-60%), повышенным содержанием CaO и MgO (до 20%), оксидов железа (10-20%), Na 2 O и K 2 O менее менее 30%.

Почвы, образующиеся на продуктах выветривания основных пород, имеют щелочную и нейтральную реакцию, много гумуса и высокое плодородие.

Магматические породы составляют 95% общей массы пород, но в качестве почвообразующих они занимают небольшие площади (в горах).

Метаморфические горные породы , образуются в результате перекристал­лизации магматических и осадочных пород. Это мрамор, гнейсы, кварцы. Занимают небольшой удельный вес в качестве почвообразующих пород.

Осадочные породы . Формирование их обусловлено процессами выветривания магматических и метаморфических горных пород, переносом продуктов выветрива­ния водными, ледниковыми и воздушными потоками и отложением на поверхности суши, на дне океанов, морей, озер, в поймах рек.

По составу осадочные породы подразделяются на обломочные, хемогенные и биогенные.

Обломочные отложения различаются по величине обломков и частиц: это валуны, камни, гравий, щебень, пески, суглинки и глины.

Хемогенные отложения образовались в результате выпадения солей из водных растворов в морских заливах, озерах в условиях жаркого климата или в результате химических реакций.

К ним относятся галоиды (каменная и калийная соль), сульфаты (гипс, ангид­рид), карбонаты (известняк, мергель, доломиты), силикаты, фосфаты. Многие из них являются сырьем для производства цемента, химических удобрений, используются как агро­руды.

Биогенные отложения образованы из скоплений остатков растений и живот­ных. Это: карбонатные (биогенные известняки и мел), кремнистые (доло­мит) и углеродистые породы (угли, торф, сапропель, нефть, газ).

Главными генетическими типами осадочных пород являются:

1. Элювиальные отложения – продукты выветривания горных пород, остав­шиеся на листе их образования. Расположен элювий на вершинах водоразделов, где смыв выражен слабо.

2. Делювиальные отложения – продукты эрозии, отложенные временными во­дотоками дождевых и талых вод в нижней части склонов.

3. Пролювиальные отложения – образовались в результате переноса и отложе­ний продуктов выветривания временными горными реками и потопами у подножий склонов.

4. Аллювиальные отложения – формируются в результате отложения продуктов выветрива­ния речными водами, поступающих в них с поверхностным стоком.

5. Озерные отложения – донные отложения озер. Илы с высоким содержанием органического вещества (15-20%) называются сапропелями.

6. Морские отложения – донные отложения морей. При отступлении (транс­грессии) морей они остаются как почвообразующие породы.

7. Ледниковые (гляциальные) или моренные отложения – продукты выветрива­ния различных пород, перемещенные и отложенные ледником. Это несортирован­ный грубообломочный материал красно-бурого или серого цвета с включениями камней, валунов, гальки.

8. Флювиогляциальные (водно-ледниковые) отложения временных водотоков и замкнутых водоемов, образовавшиеся при таянии ледника.

9. Покровные глины относятся к внеледниковым отложениям и рассматрива­ются как отложения мелководных приледниковых разливов талых вод. Они пере­крывают марену сверху слоем 3-5 м. Имеют желто-бурую окраску, хорошо отсорти­рованы, не содержат камней и валунов. Почвы на покровных суглинках более пло­дородные, чем на марене.

10. Лессы и лессовидные суглинки характеризуются палевой окраской, повы­шенным содержанием пылеватых и илистых фракций, рыхлым сложением, высокой пористостью, высоким содержанием карбонатов кальция. На них образовались пло­дородные серые лесные, каштановые почвы, черноземы и сероземы.

11. Эоловые отложения образовались в результате деятельности ветра. Разру­шительная деятельность ветра слагается из коррозии (оттачивание, шлифование песком горных пород) и дефляции (сдувание и перенос ветром мелких частиц почв). Оба эти процесса вместе взятые представляет собой ветровую эрозию.

Основные схемы, формулы и т.д., иллюстрирующие содержание: презентация с фотографиями видов выветривания.

Вопросы для самоконтроля:

1. Что такое выветривание?

2. Что такое магматизация?

3. Чем отличается физическое и химическое выветривание?

4. Что такое геологический круговорот веществ?

5. Опишите строение Земли?

6. Что такое магма?

7. Из каких слоев состоит ядро Земли?

8. Что такое породы?

9. Как классифицируются породы?

10. Что такое лесс?

11. Что такое фракция?

12. Какие характеристики называются органолептические?

Основная:

1. Добровольский В.В. География почв с основами почвоведения: Учебник для вузов. — М.: Гуманит. изд. Центр ВЛАДОС, 1999.-384 с.

2. Почвоведение/ Под.ред. И.С. Кауричева. М. Агропромиадат изд. 4. 1989.

3. Почвоведение/ Под.ред. В.А. Ковды, Б.Г. Розанова в 2-х частях М. Высшая школа 1988.

4. Глазовская М.А., Геннадьев А.И. География почв с основами почвоведения МГУ. 1995

5. Роде А.А., Смирнов В.Н. Почвоведение. М. Высшая школа, 1972

Дополнительная:

1. Глазовская М.А. Общее почвоведение и география почв. М. Высшая школа 1981

2. Ковда В.А. Основы учения о почвах. М. Наука.1973

3. Ливеровский А.С. Почвы СССР. М. Мысль 1974

4. Розанов Б. Г. Почвенный покров земного шара. М. изд. У. 1977

5. Александрова Л.Н., Найденова О.А. Лабораторно-практические занятия по почвоведению. Л. Агропромиздат. 1985

Cтраница 1


Геологический круговорот (большой круговорот веществ в природе) - круговорот веществ, движущей силой которого являются экзогенные и эндогенные геологические процессы.  

Геологический круговорот - круговорот веществ, движущей силой которого являются экзогенные и эндогенные геологические процессы.  

Границы геологического круговорота значительно шире границ биосферы, его амплитуда захватывает слои земной коры далеко за пределами биосферы. И, самое главное, - в процессах указанного круговорота живые организмы играют второстепенную роль.  

Таким образом, геологический круговорот веществ протекает без участия живых организмов и осуществляет перераспределение вещества между биосферой и более глубокими слоями Земли.  

Важнейшую роль в большом цикле геологического круговорота играют малые циклы вещества, как биосферные, так и техносферные, попав в которые вещество надолго выключается из большого геохимического потока, трансформируясь в бесконечных циклах синтеза и разложения.  

Важнейшую роль в большом цикле геологического круговорота играют малые циклы вещества, как биосферные, так и техносферные, попав в которые, вещество надолго выключается из большого геохимического потока, трансформируясь в бесконечных циклах синтеза и разложения.  

Этот углерод принимает участие в медленном геологическом круговороте.  


Именно этот углерод принимает участие в медленном геологическом круговороте. Жизнь на Земле и газовый баланс атмосферы поддерживаются участвующими в малом (биогенном) круговороте относительно небольшими количествами углерода, содержащегося в растительных (5 10й т) и животных (5 109 т) тканях. Однако в настоящее время человек интенсивно замыкает на себя круговорот веществ, в том числе углерода. Так, например, подсчитано, что суммарная биомасса всех домашних животных уже превышает биомассу всех диких наземных животных. Площади культивируемых растений приближаются к площадям естественных биогеоценозов, и многие культурные экосистемы по своей продуктивности, непрерывно повышаемой человеком, значительно превосходят природные.  

Наиболее масштабным во времени и в пространстве является так называемый геологический круговорот веществ.  

Различают 2 типа круговорота веществ в природе: большой или геологический круговорот веществ между сушей и океаном; малый или биологический - между почвой и растениями.  

Извлекаемая растением из почвы вода в парообразном состоянии попадает в атмосферу, затем, охлаждаясь, конденсируется и вновь в виде осадков возвращается в почву или океан. Геологический круговорот воды обеспечивает механическое перераспределение, осаждение, накопление твердых осадков на суше и на дне водоемов, а также в процессе механического разрушения почв и горных пород. Однако химическая функция воды осуществляется при участии живых организмов или продуктов их жизнедеятельности. Природные воды, как и почвы, - сложное биокосное вещество.  

Геохимическая деятельность человека становится сравнимой по масштабам с биологическими и геологическими процессами. В геологическом круговороте резко возрастает звено денудации.  

Фактором, который накладывает основной отпечаток на общий характер и биологич. Вместе с тем геологический круговорот воды беспрерывно стремится вымыть все эти элементы из толщ рухляка суши в бассейн океана. Поэтому сохранение элементов пищи растений в пределах суши требует обращения их в абсолютно нерастворимую в воде форму. Этому требованию отвечает живое органич.  

Биологический (малый) круговорот - циркуляция веществ между растениями, животным миром, микроорганизмами и почвой. Основа его - фотосинтез, т. е. превращение зелеными растениями и особыми микроорганизмами лучистой энергии Солнца в энергию химических связей органических веществ. Фотосинтез обусловил появление на Земле кислорода при помощи зеленых организмов, озонового слоя и условий для биологической эволюции.[ ...]

Малый биологический круговорот веществ имеет особенно большое значение в почвообразовании, поскольку именно взаимодействие биологического и геологического круговоротов лежит в основе почвообразовательного процесса.[ ...]

Круговорот азота в настоящее время подвергается сильному воздействию со стороны человека. С одной стороны, массовое производство азотных удобрений и их использование приводят к избыточному накоплению нитратов. Азот, поступающий на поля в виде удобрений, теряется из-за отчуждения урожая, выщелачивания и денитрификации. С другой стороны, при снижении скорости превращения аммиака в нитраты аммонийные удобрения накапливаются в почве. Возможно подавление деятельности микроорганизмов в результате загрязнения почвы отходами промышленности. Однако все эти процессы носят достаточно локальный характер. Гораздо большее значение имеет поступление оксидов азота в атмосферу при сжигании топлива на теплоэлектростанциях и на транспорте. Азот, "фиксированный” в промышленных выбросах, токсичен, в отличие от азота биологической фиксации. При естественных процессах оксиды азота появляются в атмосфере в малых количествах в качестве промежуточных продуктов, но в городах и промышленных районах их концентрации становятся опасными. Они раздражают органы дыхания, а под воздействием ультрафиолетового излучения возникают реакции между окси-дамй азота и углеводородами с образованием высокотоксичных и канцерогенных соединений.[ ...]

Круговороты как форма перемещения вещества присущи и биострому, но здесь они приобретают свои особенности. Горизонтальный круговорот представлен триадой: рождение - размножение- гибель (разложение); вертикальный - процессом фотосинтеза. И тот и другой в формулировке А. И. Перельмана (1975) находят единство в малом биологическом круговороте: «... химические элементы в ландшафте совершают круговороты, в ходе которых многократно поступают в живые организмы («организуются») и выходят из них («минерализуются»)»2.[ ...]

Круговорот биологический (биотический) - явление непрерывного, циклического, закономерного, но неравномерного во времени и пространстве перераспределения вещества, энергии1 и информации в пределах экологических систем различного иерархического уровня организации - от биогеоценоза до биосферы. Круговорот веществ в масштабах всей биосферы называют большим кругом (рис. 6.2), а в пределах конкретного биогеоценоза - малым кругом биотического обмена.[ ...]

Любой биологический круговорот характеризуется многократным включением атомов химических элементов в тела живых организмов и выходом их в окружающую среду, откуда они вновь захватываются растениями и вовлекаются в круговорот. Малый биологический круговорот характеризуется емкостью - количеством химических элементов, находящихся одновременно в составе живого вещества в данной экосистеме, и скоростью - количеством живого вещества, образующегося и разлагающегося в единицу времени.[ ...]

В основе малого биологического круговорота веществ лежат процессы синтеза и разрушения органических соединений с участием живого вещества. В отличие от большого малый круговорот характеризуется ничтожным количеством энергии.[ ...]

Напротив, биологический круговорот вещества проходит в границах обитаемой биосферы и воплощает в себе уникальные свойства живого вещества планеты. Будучи частью большого, малый круговорот осуществляется на уровне биогеоценоза, он заключается в том, что питательные вещества почвы, вода, углерод аккумулируются в веществе растений, расходуются на построение тела и жизненные процессы как их самих, так и организмов - консументов. Продукты разложения органического вещества почвенной микрофлорой и мезофауной (бактерии, грибы, моллюски, черви, насекомые, простейшие и др.) вновь разлагаются до минеральных компонентов, опять-таки доступных растениям и поэтому вновь вовлекаемых ими в поток вещества.[ ...]

Описанный круговорот веществ на Земле, поддерживаемый солнечной энергией, - круговая циркуляция веществ между растениями, микроорганизмами, животными и другими живыми организмами - называется биологическим круговоротом веществ, или малым круговоротом. Время полного обмена вещества по малому круговороту зависит от массы этого вещества и интенсивности процессов его продвижения по циклу и оценивается в несколько сот лет.[ ...]

Существуют большой и малый - (биологический) круговороты вещества в природе, круговорот воды.[ ...]

Несмотря на относительно малую толщину слоя водяного пара в атмосфере (0,03 м), именно атмосферная влага играет основную роль в циркуляции воды и ее биогеохимическом круговороте. В целом для всего земного шара существует один источник притока воды - атмосферные осадки - и один источник расхода - испарение, составляющее 1030 мм в год. В жизнедеятельности растений огромная роль воды принадлежит осуществлению процессов фотосинтеза (важнейшее звено биологического круговорота) и транспирации. Суммарное испарение, или масса воды, испаряемой древесной или травянистой растительностью, поверхностью почвы, играет важную роль в круговороте воды на континентах. Грунтовые воды, проникая сквозь ткани растений в процессе транспирации, привносят минеральные соли, необходимые для жизнедеятельности самих растений.[ ...]

На базе большого геологического круговорота возник круговорот органических веществ - малый, в основе которого лежат процессы синтеза и разрушения органических соединений. Эти два процесса обеспечивают жизнь на Земле. Энергия биологического круговорота составляет всего 1% уловленной Землей солнечной энергии, но именно она совершает громадную работу по созиданию живого вещества.[ ...]

Солнечная энергия обеспечивает на Земле два круговорота веществ: геологический, или большой, и малый, биологический (биотический).[ ...]

Дестабилизация процесса нитрификации нарушает поступление в биологический круговорот нитратов, количество которых предопределяет ответную реакцию на изменение среды обитания у комплекса денитрификаторов. Ферментные системы денитрификаторов уменьшают скорость полного восстановления, слабее вовлекая закись азота в конечный этап, осуществление которого требует значительных энергетических затрат. В результате этого содержание закиси азота в надпочвенной атмосфере эродированных экосистем достигало 79 - 83% (Косинова и др., 1993). Отчуждение части органических веществ из черноземов под воздействием эрозии отражается на пополнении азотного фонда в ходе фото- и гетеротрофной фиксации азота: аэробной и анаэробной. На первых этапах эрозии быстрыми темпами идет подавление именно анаэробной азотфиксации в силу параметров лабильной части органического вещества (Хазиев, Багаутдинов, 1987). Активность ферментов инвертазы и каталазы в сильносмытых черноземах по сравнению с несмытыми уменьшилась более чем на 50%. В серых лесных почвах по мере увеличения их смытости наиболее резко снижается инвертазная активность. Если в слабосмытых почвах отмечается постепенное затухание активности с глубиной, то в сильносмытых уже в подпахотном слое инвертазная активность очень мала или не обнаруживается. Последнее связано с выходом на дневную поверхность иллювиальных горизонтов с крайне низкой активностью фермента. По активности фосфатазы и, особенно, каталазы четко выраженной зависимости от степени смытости почв не наблюдалось (Личко, 1998).[ ...]

Геохимия ландшафта раскрывает скрытую, наиболее глубинную сторону малого географического круговорота вещества и энергии. Понятие малого географического круговорота еще недостаточно разработано в физической географии. В общем виде его можно представить в виде многострунного не вполне замкнутого кругового потока, состоящего из поступающего и излучаемого тепла, биологического круговорота химических элементов, малого круговорота воды (осадки - испарение, наземный и подземный сток и приток), эоловой миграции - привнося и выноса - минерального вещества.[ ...]

Ослабление дернового процесса почвообразования обусловлено низкой интенсивностью биологического круговорота, малой продуктивностью растительности. Ежегодный опад при общей биомассе около Ют/га не превышает 0,4-0,5т/га. Основная масса опада представлена корневыми остатками. В биологический круговорот вовлекается около 70 кг/га азота и 300 кг/га зольных элементов.[ ...]

Влажные тропические леса - это достаточно древние кли-максные экосистемы, в которых круговорот питательных веществ доведен до совершенства - они мало теряются и немедленно поступают в биологический круговорот, осуществляемый мутуалистическими организмами и неглубокими, большей частью воздушными, с мощной микоризой, корнями деревьев. Именно благодаря этому на скудных почвах так пышно растут леса.[ ...]

Формирование химического состава почвы осуществляется под влиянием большого геологического и малого биологического круговорота веществ в природе. Наиболее легко из почвы выносятся такие элементы, как хлор, бром, йод, сера, кальций, магний, натрий.[ ...]

Из-за высочайшей активности биогеохимических процессов и колоссальных объемов и масштабов оборота веществ биологически значимые химические элементы находятся в постеянном циклическом движении. По некоторым подсчетам, если принять, что биосфера существует не менее чем 3,5-4 млрд. лет, то вся вода Мирового океана прошла через биогеохимический цикл не менее 300 раз, а свободный кислород атмосферы - не менее 1 млн. раз. Круговорот углерода происходит за 8 лет, азота за 110 лет, кислорода за 2500 лет. Основная масса углерода, сосредоточенная в карбонатных отложениях дна океана (1,3 х 1016 т), других кристаллических горных породах (1 х 1016 т), каменном угле и нефти (0,34 х 1016 т), участвует в большом круговороте. Углерод, содержащийся в растительных (5 х 10м т) и животных тканях (5 х 109 т), участвует в малом круговороте (биогеохимическом цикле).[ ...]

Однако на суше, в дополнение к приносимым с океана осадкам, происходит испарение и осадки по замкнутому на суше круговороту воды. Если бы не существовало биоты континентов, то эти дополнительные осадки суши были бы намного меньше осадков, ПрйКОСйМЫХ С ОК6Э.На, так КЗ.К испзрсние с поверхности рек И 03£р ничтожно мало в сравнении с осадками, приносимыми с океана. Только образование растительного покрова и почвы приводит к большой величине испарения с поверхности суши. При образовании растительного покрова происходит накопление воды в почве, растениях и континентальной части атмосферы, что приводит к увеличению замкнутого круговорота на суше. В настоящее время осадки на суше в среднем втрое превосходят речной сток. Следовательно, только одна треть осадков приносится с океана и более двух третей обеспечиваются замкнутым круговоротом воды на суше. Таким образом, вода на суше становится биологически накапливаемой, главная часть водного режима суши формируется биотой и может регулироваться биологически.[ ...]

Выявить некоторые главные особенности проявления первой и второй сил удобно, исходя из представления о действии на Земле круговоротов вещества: большого - геологического (геокруговорот) и малого - биологического (биокруго вор от).[ ...]

Растительные сообщества южной тайги более устойчивы к химическому загрязнению по сравнению с сообществами северной тайги. Малая устойчивость северотаежных ценозов обусловлена их незначительным видовым разнообразием и более простым строением, наличием чувствительных к химическому загрязнению видов (мхи и лишайники), малой продуктивностью и емкостью биологического круговорота, меньшей способностью к восстановлению.[ ...]

Однако любая экосистема, независимо от размера, включает в себя живую часть (биоценоз) и ее физическое, то есть неживое, окружение. При этом малые экосистемы входят в состав все более крупных, вплоть до глобальной экосистемы Земля. Аналогично общий биологический круговорот вещества на планете также складывается из взаимодействия множества более мелких, частных круговоротов.[ ...]

Почваг является неотъемлемым компонентом наземных биогеоценозов. Она осуществляет сопряжение (взаимодействие) большого геологического и малого биологического круговоротов веществ. Почва - уникальное гГо сложности вещественного состава природное образование. Вещество почвы представлено четырьмя физическими фазами: твердой (минеральные и органические частицы), жидкой (почвенный раствор), газообразной (почвенный воздух) и живой (организмы). Для почв характерна сложная пространственная организация и дифференциация признаков, свойств и процессов.[ ...]

Согласно первому следствию мы можем рассчитывать лишь на малоотходное производство. Поэтому первым этапом развития технологий должна быть их малая ресурсоемкость (как на входе, так и на выходе - экономность и незначительные выбросы), вторым этапом будет создание цикличности производств (отходы одних могут быть сырьем для других) и третьим - организация разумного захоронения неминуемых остатков и нейтрализация неустранимых энергетических отходов. Представление, будто биосфера работает по принципу безотходности, ошибочно, так как в ней всегда накапливаются выбывающие из биологического круговорота вещества, формирующие осадочные породы.[ ...]

Сущность почвообразования по В. Р. Вильямсу определяется как диалектическое взаимодействие процессов синтеза и разложения органического вещества, протекающее в системе малого биологического круговорота веществ.[ ...]

На разных этапах развития биосферы процессы в ней не были одинаковыми, несмотря на то, что шли по аналогичным схемам. Наличие ярко выраженного круговорота веществ, согласно закону глобального замыкания биогеохимического круговорота, является обязательным свойством биосферы любого этапа ее развития. Вероятно, это непреложный закон ее существования. Следует особо обратить внимание на увеличение доли биологического, а не геохимического, компонента в замыкании биогеохимического круговорота веществ. Если на первых этапах эволюции преобладал общебиосферный цикл - большой биосферный круг обмена (сначала только в пределах водной среды, а затем разделенный на два подцикла - суши и океана), то в дальнейшем он стал дробиться. Вместо относительно гомогенной биоты появились и все глубже дифференцировались экосистемы различного уровня иерархии и географической дислокации. Приобрели важное значение малые, биогеоценотические, обменные круги. Возник так называемый «обмен обменов» - стройная система биогеохимических круговоротов с высочайшим значением биотической составляющей.[ ...]

В средних широтах приход энергии от Солнца равен 48-61 тыс. ГДЖ/га в год. При внесении дополнительной энергии более 15 ГДЖ/га в год возникают неблагоприятные для среды процессы - эрозия и дефляция почв, заиление и загрязнение малых рек, эфтрофикация водоемов, нарушения биологического круговорота в экосистемах.[ ...]

Для восточно-сибирской области характерны суровые малоснежные зимы и выпадение в основном летних осадков, промывающих почвенную толщу. В результате в восточно-сибир-ских черноземах имеет место периодический промывной режим. Биологический круговорот подавлен низкими температурами. Вследствие этого содержание гумуса в забайкальских черноземах невелико (4-9%) и мощность гумусового горизонта мала. Содержание карбонатов очень незначительно или их совсем нет. Поэтому черноземы восточно-сибирской фуппы называют малокарбонатными и бескарбонатными (например, черноземы выщелоченные малокарбонатные или бескарбонат-ные, черноземы обыкновенные малокарбонатные).[ ...]

Большинство второстепенных элементов в концентрациях, обычных для многих природных экосистем, почти не оказывают влияния на организмы, возможно, потому, что организмы к ним адаптировались. Таким образом, миграции этих элементов мало интересовали нас, если бы в окружающую среду не слишком часто попадали побочные продукты горнодобывающей промышленности, различных производств, химической промышленности и современного сельского хозяйства, продукты, содержащие высокие концентрации тяжелых металлов, ядовитые органические соединения и другие потенциально опасные вещества. Даже очень редкий элемент, если он вносится в среду в форме высокотоксичного соединения металла или радиоактивного изотопа, может приобрести важное биологическое значение, так как даже небольшое (с геохимической точки зрения) количество такого вещества способно оказывать выраженный биологический эффект.[ ...]

Химическая природа витаминов и других стимулирующих рост органических соединений, а также потребность в них человека и домашних животных известны давно; однако исследование этих веществ на уровне экосистемы только началось. Содержание органических питательных веществ в воде или почве так мало, что их следовало бы назвать «питательными микро-микроэлементами» в отличие от «питательных макроэлементов», таких, как азот, и «питательных микроэлементов», таких, как «следовые» металлы (см. гл. 5). Нередко единственным способом измерить их содержание является биологическая проба: используются специальные штаммы микроорганизмов, интенсивность роста которых пропорциональна концентрации органических питательных веществ. Как подчеркивалось в предыдущем разделе, о роли того или иного вещества и скорости его потока не всегда можно судить по его концентрации. Сейчас становится ясно, что органические питательные вещества играют важную роль в метаболизме сообщества и что они могут быть лимитирующим фактором. Эта интереснейшая область исследований в ближайшее время, несомненно, привлечет к себе внимание ученых. Приводимое ниже описание круговорота витамина В12 (кобаламина), взятое из работы Провасоли (1963), показывает, как мало мы знаем о круговороте органических питательных веществ.[ ...]

В.Р.Вильямс (1863-1939) разработал учение о факторах земледелия. Согласно первому закону земледелия, ни один из факторов жизни растений не может быть заменен другим. И, кроме того, все факторы жизни растений, безусловно, равнозначимы (второй закон). Выделим его важную идею о том, что почва - это результат взаимодействия малого - биологического и большого - геологического круговорота вещества.[ ...]

Свои положения в области генетического почвоведения и изучения плодородия почв В. Р. Вильямс тесно связывал с практическими вопросами сельского хозяйства и положил их в основу травопольной системы земледелия. Наиболее важные и оригинальные взгляды были высказаны В. Р. Вильямсом о роли живых организмов в почвообразовании, о сущности почвообразовательного процесса и природе отдельных конкретных процессов, о малом биологическом круговороте веществ, о плодородии почв, почвенном гумусе и структуре почв.[ ...]

Эти подходы соотносятся по существу как стратегия и тактика, как выбор долговременного поведения и меры первоочередных решений. Они не могут быть разъединены: загрязнение окружающей человека среды наносит вред другим организмам и живой природе в целом, а деградация природных систем ослабляет их способность к естественному очищению среды. Но всегда следует понимать, что сохранить качество окружающей человека среды невозможно без участия природных экологических механизмов. Даже если мы освоим мало загрязняющие технологии, мы ничего не достигнем, если одновременно не перестанем мешать природе регулировать состав среды, очищать ее и делать пригодной для жизни. Самые чистые технологии и самые совершенные средозащитные устройства не спасут нас, если будет продолжаться вырубка лесов, уменьшаться разнообразие биологических видов, нарушаться круговорот веществ в природе. Следует подчеркнуть, что с экологической точки зрения концепция «охраны» порочна с самого начала, так как деятельность следует строить таким образом, чтобы не допускать, предотвращать все эффекты и результаты, от которых потом пришлось бы «охранять».[ ...]

Около 99 % всего вещества в биосфере трансформировано живыми организмами, причем суммарная биомасса живого вещества Земли оценивается всего в 2,4 1012 т сухого вещества, что составляет 10“9 часть массы Земли. Ежегодное воспроизводство биомассы составляет около 170 млрд. т сухого вещества. Полная биомасса растительных организмов в 2500 раз больше, чем у животных, но видовое разнообразие зоосферы в 6 раз богаче, чем фитосферы. Если выложить все живые организмы в один слой, то на поверхности Земли образовался бы биологический покров толщиной всего в 5 мм. Но несмотря на малые размеры биоты, именно она определяет локальные условия на поверхности земной коры. Ее существование ответственно за появление в атмосфере свободного кислорода, формирование почв и круговорот элементов в природе.[ ...]

Грибы мы уже описывали выше, и собственно грибом мы называем его плодовое тело, однако это лишь часть огромного организма. Это обширная сеть микроскопических волокон (рифов), которая называется мицелием (грибницей) и пронизывает детрит, в основном древесину, лиственный опад и т. п. Мицелий по мере роста выделяет значительное число ферментов, которые разлагают древесину до состояния, готового к употреблению, и постепенно грибница полностью разлагает валежную древесину. Интересно, как пишет Б. Небел (1993), что можно находить грибы на неорганической почве, так как их мицелий способен извлекать из ее толщи даже весьма малые по концентрации органические вещества. Сходным образом функционируют и бактерии, но уже на микроскопическом уровне. Весьма важной для поддержания устойчивости биологического круговорота является способность грибов и некоторых бактерий образовывать громадные количества спор (репродуктивных клеток). Это микроскопические частицы переносятся воздушными потоками в атмосфере на весьма значительные расстояния, что позволяет им распространяться повсеместно и давать жизнеспособное потомство на любом пространстве при наличии оптимальных условий жизнедеятельности.