Меню
Бесплатно
Главная  /  Возраст  /  Атомное оружие. Применение ядерного оружия против гражданского населения США применили ядерное оружие в борьбе за мировую гегемонию

Атомное оружие. Применение ядерного оружия против гражданского населения США применили ядерное оружие в борьбе за мировую гегемонию

Как известно, к ядерному оружию первого поколения , его нередко называют АТОМНЫМ, относят боевые заряды, основанные на использовании энергии деления ядер урана-235 или плутония-239. Первое в истории испытание такого зарядного устройства мощностью 15 кт было проведено в США 16 июля 1945 года на полигоне Аламогордо.

Взрыв в августе 1949 года первой советской атомной бомбы придал новый импульс в развертывании работ по созданию ядерного оружия второго поколения . В его основе лежит технология использования энергии термоядерных реакций синтеза ядер тяжелых изотопов водорода — дейтерия и трития. Такое оружие называют ТЕРМОЯДЕРНЫМ или водородным. Первое испытание термоядерного устройства «Майк» было проведено Соединенными Штатами 1 ноября 1952 года на острове Элугелаб (Маршалловы острова), мощность которого составила 5-8 миллионов тонн. В следующем году термоядерный заряд был взорван в СССР.

Осуществление атомных и термоядерных реакций открыло широкие возможности для их использования при создании серии различных боеприпасов последующих поколений. К ядерному оружию третьего поколения относят специальные заряды (боеприпасы), у которых за счет особой конструкции добиваются перераспределения энергии взрыва в пользу одного из поражающих факторов. Другие варианты зарядов такого оружия обеспечивают создание фокусировки того или иного поражающего фактора в определенном направлении, что также приводит к значительному усилению его поражающего действия.

Анализ истории создания и совершенствования ядерного оружия свидетельствует о том, что США неизменно лидировали в создании новых его образцов. Однако проходило некоторое время и СССР ликвидировал эти односторонние преимущества США. Не является исключением в этом отношении и ядерное оружие третьего поколения. Одним из наиболее известных образцов ядерного оружия третьего поколения является НЕЙТРОННОЕ оружие.

Что представляет собой нейтронное оружие?

О нейтронном оружии широко заговорили на рубеже 60-х годов. Однако впоследствии стало известно, что возможность его создания обсуждалась еще задолго до этого. Бывший президент Всемирной федерации научных работников профессор из Великобритании Э.Буроп вспоминал, что впервые он услышал об этом еще в 1944 году, когда в составе группы английских ученых работал в США над «Манхэттенским проектом». Работа над созданием нейтронного оружия была инициирована необходимостью получения мощного боевого средства, обладающего избирательной способностью поражения, для использования непосредственно на поле боя.

Первый взрыв нейтронного зарядного устройства (кодовый номер W-63) был произведен в подземной штольне Невады в апреле 1963 года . Полученный при испытании поток нейтронов оказался значительно ниже расчетной величины, что существенно снижало боевые возможности нового оружия. Потребовалось еще почти 15 лет для того, чтобы нейтронные заряды приобрели все качества боевого оружия. По мнению профессора Э.Буропа, принципиальное отличие устройства нейтронного заряда от термоядерного заключается в различной скорости выделения энергии: «В нейтронной бомбе выделение энергии происходит гораздо медленнее. Это нечто вроде пиропатрона замедленного действия «.

За счет этого замедления и уменьшается энергия, идущая на образование ударной волны и светового излучения и, соответственно, возрастает ее выделение в виде потока нейтронов. В ходе дальнейших работ были достигнуты определенные успехи в обеспечении фокусировки нейтронного излучения, что позволяло не только обеспечивать усиление его поражающего действия в определенном направлении, но и снизить опасность при его применении для своих войск.

В ноябре 1976 года в Неваде были проведены очередные испытания нейтронного боезаряда, в ходе которых были получены весьма впечатляющие результаты . В результате этого в конце 1976 года было принято решение о производстве компонентов нейтронных снарядов 203-мм калибра и боеголовок к ракете «Ланс». Позднее, в августе 1981 года на заседании Группы ядерного планирования Совета национальной безопасности США было принято решение о полномасштабном производстве нейтронного оружия: 2000 снарядов к 203-мм гаубице и 800 боеголовок к ракете «Ланс».

При взрыве нейтронной боеголовки основное поражение живым организмам наносится потоком быстрых нейтронов . По расчетам, на каждую килотонну мощности заряда выделяется около 10 нейтронов, которые с огромной скоростью распространяются в окружающем пространстве. Эти нейтроны обладают чрезвычайно высоким поражающим действием на живые организмы, гораздо сильнее, чем даже Y-излучение и ударная волна . Для сравнения укажем, что при взрыве обычного ядерного заряда мощностью 1 килотонна открыто расположенная живая сила будет уничтожена ударной волной на расстоянии 500-600 м. При взрыве нейтронной боеголовки той же мощности уничтожение живой силы будет происходить на расстоянии примерно в три раза большем.

Образующиеся при взрыве нейтроны движутся со скоростями несколько десятков километров в секунду. Врываясь словно снаряды в живые клетки организма, они выбивают ядра из атомов, рвут молекулярные связи, образуют свободные радикалы, обладающие высокой реакционной способностью, что приводит к нарушению основных циклов жизненных процессов.

При движении нейтронов в воздухе в результате столкновений с ядрами атомов газов они постепенно теряют энергию. Это приводит к тому, что на расстоянии около 2 км их поражающее действие практически прекращается . Для того чтобы снизить разрушительное действие сопутствующей ударной волны мощность нейтронного заряда выбирают в пределах от 1 до 10 кт, а высоту взрыва над землей — порядка 150-200 метров.

По свидетельству некоторых американских ученых, в Лос-Аламосской и Сандийской лабораториях США и во Всероссийском институте экспериментальной физики в Сарове (Арзамас-16) проводятся термоядерные эксперименты, в которых наряду с исследованиями по получению электрической энергии изучается возможность получения чисто термоядерной взрывчатки. Наиболее вероятным побочным результатом проводимых исследований, по их мнению, может стать улучшение энергомассовых характеристик ядерных боезарядов и создание нейтронной мини-бомбы. По оценкам экспертов, такой нейтронный боезаряд с тротиловым эквивалентом всего в одну тонну может создать смертельную дозу излучения на расстояниях 200-400 м .

Нейтронное оружие является мощным оборонительным средством и его наиболее эффективное применение возможно при отражении агрессии, особенно в том случае, когда противник вторгся на защищаемую территорию. Нейтронные боеприпасы являются тактическим оружием и их применение наиболее вероятно в так называемых «ограниченных» войнах, в первую очередь в Европе . Это оружие может приобрести особое значение для России, поскольку в условиях ослабления ее вооруженных сил и возрастания угрозы региональных конфликтов она будет вынуждена делать больший упор в обеспечении своей безопасности на ядерное оружие.

Применение нейтронного оружия может быть особенно эффективным при отражении массированной танковой атаки . Известно, что танковая броня на определенных расстояниях от эпицентра взрыва (более 300-400 м при взрыве ядерного заряда мощностью 1 кт) обеспечивает защиту экипажей от ударной волны и Y-излучения. В то же время быстрые нейтроны проникают через стальную броню без существенного ослабления.

Проведенные расчеты показывают, что при взрыве нейтронного заряда мощностью 1 килотонна экипажи танков будут мгновенно выведены из строя в радиусе 300 м от эпицентра и погибнут в течение двух суток. Экипажи, находящиеся на расстоянии 300-700 м, выйдут из строя через несколько минут и в течение 6-7 дней также погибнут; на расстояниях 700-1300 м они окажутся небоеспособными через несколько часов, а гибель большинства из них растянется в течение нескольких недель. На расстояниях 1300-1500 м определенная часть экипажей получит серьезные заболевания и постепенно выйдет из строя.

Нейтронные боезаряды могут быть также использованы в системах ПРО для борьбы с боеголовками атакующих ракет на траектории . По расчетам специалистов, быстрые нейтроны, обладая высокой проникающей способностью, пройдут через обшивку боеголовок противника, вызовут поражение их электронной аппаратуры. Кроме того, нейтроны, взаимодействуя с ядрами урана или плутония атомного детонатора боеголовки, вызовут их деление.

Такая реакция будет происходить с большим выделением энергии, что, в конечном счете, может привести к нагреванию и разрушению детонатора. Это, в свою очередь, приведет к выходу из строя всего заряда боеголовки. Это свойство нейтронного оружия было использовано в системах противоракетной обороны США. Еще в середине 70-х годов нейтронные боеголовки были установлены на ракетах-перехватчиках «Спринт» системы «Сейфгард», развернутой вокруг авиабазы «Гранд Форкс» (штат Северная Дакота). Не исключено, что в будущей системе национальной ПРО США будут также использованы нейтронные боезаряды.

Как известно, в соответствии с обязательствами, объявленными президентами США и России в сентябре-октябре 1991 г., все ядерные артснаряды и боеголовки тактических ракет наземного базирования должны быть ликвидированы . Однако не вызывает сомнений, что в случае изменения военно-политической ситуации и принятия политического решения отработанная технология нейтронных боезарядов позволяет наладить их массовое производство в короткое время.

«Супер-ЭМИ»

Вскоре после окончания Второй мировой войны, в условиях монополии на ядерное оружие, Соединенные Штаты возобновили испытания с целью его совершенствования и определения поражающих факторов ядерного взрыва. В конце июня 1946 года в районе атолла Бикини (Маршалловы острова) под шифром «Операция Кроссроудс» были проведены ядерные взрывы, в ходе которых исследовалось поражающее действие атомного оружия.

В ходе этих испытательных взрывов было обнаружено новое физическое явление образование мощного импульса электромагнитного излучения (ЭМИ) , к которому сразу же был проявлен большой интерес. Особенно значительным оказался ЭМИ при высоких взрывах. Летом 1958 года были произведены ядерные взрывы на больших высотах. Первую серию под шифром «Хардтэк» провели над Тихим океаном вблизи острова Джонстон. В ходе испытаний были взорваны два заряда мегатонного класса: «Тэк» — на высоте 77 километров и «Ориндж» — на высоте 43 километра.

В 1962 году были продолжены высотные взрывы: на высоте 450 км под шифром «Старфиш» был произведен взрыв боеголовки мощностью 1,4 мегатонны. Советский Союз также в течение 1961-1962 гг. провел серию испытаний, в ходе которых исследовалось воздействие высотных взрывов (180-300 км) на функционирование аппаратуры систем ПРО.
При проведении этих испытаний были зафиксированы мощные электромагнитные импульсы, которые обладали большим поражающим действием на электронную аппаратуру, линии связи и электроснабжения, радио- и радиолокационные станции на больших расстояниях. С тех пор военные специалисты продолжали уделять большое внимание исследованию природы этого явления, его поражающего действия, способов защиты от него своих боевых и обеспечивающих систем.

Физическая природа ЭМИ определяется взаимодействием Y-квантов мгновенного излучения ядерного взрыва с атомами газов воздуха : Y-кванты выбивают из атомов электроны (так называемые комптоновские электроны), которые движутся с огромной скоростью в направлении от центра взрыва. Поток этих электронов, взаимодействуя с магнитным полем Земли, создает импульс электромагнитного излучения. При взрыве заряда мегатонного класса на высотах несколько десятков километров напряженность электрического поля на поверхности земли может достигать десятков киловольт на метр .

На основе полученных в ходе испытаний результатов военные специалисты США развернули в начале 80-х годов исследования, направленные на создание еще одного вида ядерного оружия третьего поколения — Супер-ЭМИ с усиленным выходом электромагнитного излучения.

Для увеличения выхода Y-квантов предполагалось создать вокруг заряда оболочку из вещества, ядра которого, активно взаимодействуя с нейтронами ядерного взрыва, испускают Y-излучение высоких энергий. Специалисты считают, что с помощью Супер-ЭМИ возможно создать напряженность поля у поверхности Земли порядка сотен и даже тысяч киловольт на метр .

По расчетам американских теоретиков, взрыв такого заряда мощностью 10 мегатонн на высоте 300-400 км над географическим центром США — штатом Небраска приведет к нарушению работы радиоэлектронных средств почти на всей территории страны в течение времени, достаточном для срыва ответного ракетно-ядерного удара.

Дальнейшее направление работ по созданию Супер-ЭМИ было связано с усилением его поражающего действия за счет фокусировки Y-излучения, что должно было привести к увеличению амплитуды импульса. Эти свойства Супер-ЭМИ делают его оружием первого удара, предназначенном для выведения из строя системы государственного и военного управления, МБР, особенно мобильного базирования, ракет на траектории, радиолокационных станций, космических аппаратов, систем энергоснабжения и т.п. Таким образом, Супер-ЭМИ имеет явно наступательный характер и является дестабилизирующим оружием первого удара .

Проникающие боеголовки — пенетраторы

Поиски надежных средств уничтожения высокозащищенных целей привели военных специалистов США к идее использования для этого энергии подземных ядерных взрывов. При заглублении ядерных зарядов в грунт значительно возрастает доля энергии, идущей на образование воронки, зоны разрушения и сейсмических ударных волн. В этом случае при существующей точности МБР и БРПЛ значительно повышается надежность уничтожения «точечных», особо прочных целей на территории противника.

Работа над созданием пенетраторов была начата по заказу Пентагона еще в середине 70-х годов, когда концепции «контрсилового» удара придавалось приоритетное значение. Первый образец проникающей боеголовки был разработан в начале 80-х годов для ракеты средней дальности «Першинг-2» . После подписания Договора по ракетам средней и меньшей дальности (РСМД) усилия специалистов США были перенацелены на создание таких боеприпасов для МБР.

Разработчики новой боеголовки встретились со значительными трудностями, связанными, прежде всего, с необходимостью обеспечить ее целостность и работоспособность при движении в грунте. Огромные перегрузки, действующие на боезаряд (5000-8000 g, g-ускорение силы тяжести) предъявляют чрезвычайно жесткие требования к конструкции боеприпаса.

Поражающее действие такой боеголовки на заглубленные, особо прочные цели определяется двумя факторами — мощностью ядерного заряда и величиной его заглубления в грунт . При этом для каждого значения мощности заряда существует оптимальная величина заглубления, при которой обеспечивается наибольшая эффективность действия пенетратора.

Так, например, разрушающее действие на особо прочные цели ядерного заряда мощностью 200 килотонн будет достаточно эффективным при его заглублении на глубину 15-20 метров и оно будет эквивалентным воздействию наземного взрыва боеголовки ракеты МХ мощностью 600 кт. Военные специалисты определили, что при точности доставки боеголовки-пенетратора, характерной для ракет МХ и «Трайдент-2», вероятность уничтожения ракетной шахты или командного пункта противника одним боезарядом, весьма высока. Это означает, что в этом случае вероятность разрушения целей будет определяться лишь технической надежностью доставки боеголовок.

Очевидно, что проникающие боеголовки предназначены для уничтожения центров государственного и военного управления противника, МБР, находящихся в шахтах, командных пунктов и т.п. Следовательно, пенетраторы являются наступательным, «контрсиловым» оружием, предназначенным для нанесения первого удара и в силу этого имеют дестабилизирующий характер .

Значение проникающих боеголовок, в случае принятия их на вооружение, может значительно возрасти в условиях сокращения стратегических наступательных вооружений, когда снижение боевых возможностей по нанесению первого удара (уменьшение количества носителей и боеголовок) потребует повышения вероятности поражения целей каждым боеприпасом. В то же время для таких боеголовок необходимо обеспечивать достаточно высокую точность попадания в цель. Поэтому рассматривалась возможность создания боеголовок-пенетраторов, оснащенных системой самонаведения на конечном участке траектории, подобно высокоточному оружию.

Рентгеновский лазер с ядерной накачкой

Во второй половине 70-х годов в Ливерморской радиационной лаборатории были начаты исследования по созданию «противоракетного оружия XXI века» — рентгеновского лазера с ядерным возбуждением . Это оружие с самого начала замышлялось в качестве основного средства уничтожения советских ракет на активном участке траектории, до разделения боеголовок. Новому оружию присвоили наименование — «оружие залпового огня».

В схематическом виде новое оружие можно представить в виде боеголовки, на поверхности которой укрепляется до 50 лазерных стержней. Каждый стержень имеет две степени свободы и подобно орудийному стволу может быть автономно направлен в любую точку пространства. Вдоль оси каждого стержня, длиной несколько метров, размещается тонкая проволока из плотного активного материала, «такого как золото». Внутри боеголовки размещается мощный ядерный заряд, взрыв которого должен выполнять роль источника энергии для накачки лазеров.

По оценкам некоторых специалистов, для обеспечения поражения атакующих ракет на дальности более 1000 км потребуется заряд мощностью несколько сотен килотонн . Внутри боеголовки также размещается система прицеливания с быстродействующим компьютером, работающим в реальном масштабе времени.

Для борьбы с советскими ракетами военными специалистами США была разработана особая тактика его боевого использования. С этой целью ядерно-лазерные боеголовки предлагалось разместить на баллистических ракетах подводных лодок (БРПЛ). В «кризисной ситуации» или в период подготовки к нанесению первого удара подлодки, оснащенные этими БРПЛ, должны скрытно выдвинуться в районы патрулирования и занять боевые позиции как можно ближе к позиционным районам советских МБР: в северной части Индийского океана, в Аравийском, Норвежском, Охотском морях.

При поступлении сигнала о старте советских ракет производится пуск ракет подводных лодок. Если советские ракеты поднялись на высоту 200 км, то для того, чтобы выйти на дальность прямой видимости, ракетам с лазерными боеголовками необходимо подняться на высоту около 950 км. После этого система управления совместно с компьютером производит наведение лазерных стержней на советские ракеты. Как только каждый стержень займет положение, при котором излучение будет попадать точно в цель, компьютер подаст команду на подрыв ядерного заряда.

Огромная энергия, выделяющаяся при взрыве в виде излучений, мгновенно переведёт активное вещество стержней (проволоку) в плазменное состояние . Через мгновение эта плазма, охлаждаясь, создаст излучение в рентгеновском диапазоне, распространяющееся в безвоздушном пространстве на тысячи километров в направлении оси стержня. Сама лазерная боеголовка через несколько микросекунд будет разрушена, но до этого она успеет послать мощные импульсы излучения в сторону целей.

Поглощаясь в тонком поверхностном слое материала ракеты, рентгеновское излучение может создать в нем чрезвычайно высокую концентрацию тепловой энергии, что вызовет его взрывообразное испарение, приводящее к образованию ударной волны и, в конечном счете, к разрушению корпуса.

Однако создание рентгеновского лазера, который считался краеугольным камнем рейгановской программы СОИ, встретилось с большими трудностями, которые пока не удалось преодолеть . Среди них на первых местах стоят сложности фокусировки лазерного излучения, а также создание эффективной системы наведения лазерных стержней.

Первые подземные испытания рентгеновского лазера были проведены в штольнях Невады в ноябре 1980 года под кодовым названием «Дофин». Полученные результаты подтвердили теоретические выкладки ученых, однако, выход рентгеновского излучения оказался весьма слабым и явно недостаточным для уничтожения ракет. После этого последовала серия испытательных взрывов «Экскалибур», «Супер-Экскалибур», «Коттедж», «Романо», в ходе которых специалисты преследовали главную цель — повысить интенсивность рентгеновского излучения за счет фокусировки.

В конце декабря 1985 года был произведен подземный взрыв «Голдстоун» мощностью около 150 кт, а в апреле следующего года — испытание «Майти Оук» с аналогичными целями. В условиях запрета на ядерные испытания на пути создания этого оружия возникли серьезные препятствия.

Необходимо подчеркнуть, что рентгеновский лазер является, прежде всего, ядерным оружием и, если его взорвать вблизи поверхности Земли, то он будет обладать примерно таким же поражающим действием, что и обычный термоядерный заряд такой же мощности.

«Гиперзвуковая шрапнель»

В ходе работ по программе СОИ, теоретические расчеты и результаты моделирования процесса перехвата боеголовок противника показали, что первый эшелон ПРО, предназначенный для уничтожения ракет на активном участке траектории, полностью решить эту задачу не сможет. Поэтому необходимо создать боевые средства, способные эффективно уничтожать боеголовки в фазе их свободного полета.

С этой целью специалисты США предложили использовать мелкие металлические частицы, разогнанные до высоких скоростей с помощью энергии ядерного взрыва . Основная идея такого оружия состоит в том, что при высоких скоростях даже маленькая плотная частица (массой не более грамма) будет обладать большой кинетической энергией. Поэтому при соударении с целью частица может повредить или даже пробить оболочку боеголовки. Даже в том случае, если оболочка будет только повреждена, то при входе в плотные слои атмосферы она будет разрушена в результате интенсивного механического воздействия и аэродинамического нагрева.

Естественно, при попадании такой частицы в тонкостенную надувную ложную цель, ее оболочка будет пробита и она в вакууме сразу же потеряет свою форму. Уничтожение легких ложных целей значительно облегчит селекцию ядерных боеголовок и, тем самым, будет способствовать успешной борьбе с ними.

Предполагается, что конструктивно такая боеголовка будет содержать ядерный заряд сравнительно небольшой мощности с автоматической системой подрыва, вокруг которого создается оболочка, состоящая из множества мелких металлических поражающих элементов. При массе оболочки 100 кг можно получить более 100 тысяч осколочных элементов , что позволит создать сравнительно большое и плотное поле поражения. В ходе взрыва ядерного заряда образуется раскаленный газ — плазма, который, разлетаясь с огромной скоростью, увлекает за собой и разгоняет эти плотные частицы. Сложной технической задачей при этом является сохранение достаточной массы осколков, поскольку при их обтекании высокоскоростным потоком газа будет происходить унос массы с поверхности элементов.

В США была проведена серия испытаний по созданию «ядерной шрапнели» по программе «Прометей». Мощность ядерного заряда в ходе этих испытаний составляла всего несколько десятков тонн. Оценивая поражающие возможности этого оружия, следует иметь в виду, что в плотных слоях атмосферы частицы, движущиеся со скоростями более 4-5 километров в секунду, будут сгорать. Поэтому «ядерную шрапнель» можно применять только в космосе, на высотах более 80-100 км, в условиях безвоздушного пространства .

Соответственно этому, шрапнельные боеголовки могут с успехом применяться, помимо борьбы с боеголовками и ложными целями, также в качестве противокосмического оружия для уничтожения спутников военного назначения, в частности, входящих в систему предупреждения о ракетном нападении (СПРН). Поэтому возможно его боевое использование в первом ударе для «ослепления» противника.

Рассмотренные выше различные виды ядерного оружия отнюдь не исчерпывают всех возможностей в создании его модификаций. Это, в частности, касается проектов ядерного оружия с усиленным действием воздушной ядерной волны, повышенным выходом Y-излучения, усилением радиоактивного заражения местности (типа пресловутой «кобальтовой» бомбы) и др.

В последнее время в США рассматриваются проекты ядерных зарядов сверхмалой мощности :
— мини-ньюкс (мощность сотни тонн),
— микро-ньюкс (десятки тонн),
— тайни-ньюкс (единицы тонн), которые кроме малой мощности, должны быть значительно более «чистыми», чем их предшественники.

Процесс совершенствования ядерного оружия продолжается и нельзя исключить появления в будущем сверхминиатюрных ядерных зарядов, созданных на основе использования сверхтяжелых трансплутониевых элементов с критической массой от 25 до 500 граммов. У трансплутониевого элемента курчатовия величина критической массы составляет около 150 граммов.

Ядерное устройство при использовании одного из изотопов калифорния будет иметь настолько малые размеры, что, обладая мощностью в несколько тонн тротила, может быть приспособлено для стрельбы из гранатометов и стрелкового оружия.

Все вышесказанное свидетельствует о том, что использование ядерной энергии в военных целях обладает значительными потенциальными возможностями и продолжение разработок в направлении создания новых образцов оружия может привести к «технологическому прорыву», который снизит «ядерный порог», окажет отрицательное влияние на стратегическую стабильность.

Запрещение всех ядерных испытаний если и не перекрывает полностью пути развития и совершенствования ядерного оружия, то значительно тормозит их. В этих условиях особое значение приобретает взаимная открытость, доверительность, ликвидация острых противоречий между государствами и создание, в конечном счете, эффективной международной системы коллективной безопасности.

/Владимир Белоус, генерал-майор, профессор Академии военных наук, nasledie.ru /

Ядерное оружие - вооружение стратегического характера, способное решать глобальные задачи. Его применение сопряжено со страшными последствиями для всего человечества. Это делает атомную бомбу не только угрозой, но и оружием сдерживания.

Появление вооружения, способного поставить точку в развитии человечества, ознаменовало начало его новой эпохи. Вероятность глобального конфликта или новой мировой войны сведена к минимуму из-за возможности тотального уничтожения всей цивилизации.

Несмотря на подобные угрозы, ядерное оружие продолжает оставаться на вооружении ведущих стран мира. В определенной степени именно оно становится определяющим фактором международной дипломатии и геополитики.

История создания ядерной бомбы

Вопрос о том, кто изобрел ядерную бомбу, в истории не имеет однозначного ответа. Предпосылкой для работы над атомным оружием принято считать открытие радиоактивности урана. В 1896 году французский химик А. Беккерель открыл цепную реакцию данного элемента, положив начало разработкам в ядерной физике.

В следующее десятилетие были открыты альфа-, бета- и гамма-лучи, а также ряд радиоактивных изотопов некоторых химических элементов. Последовавшее открытие закона радиоактивного распада атома стало началом для изучения ядерной изометрии.

В декабре 1938 года немецкие физики О. Ган и Ф. Штрассман первыми смогли провести реакцию расщепления ядра в искусственных условиях. 24 апреля 1939 руководству Германии было доложено о вероятности создания нового мощного взрывчатого вещества.

Однако немецкая ядерная программа была обречена на провал. Несмотря на успешное продвижение ученых, страна ввиду войны постоянно испытывала трудности с ресурсами, особенно с поставками тяжелой воды. На поздних этапах, исследования замедлялись постоянными эвакуациями. 23 апреля 1945 разработки немецких ученых были захвачены в Хайгерлохе и вывезены в США.

США стали первой страной, выразившей заинтересованность в новом изобретении. В 1941 году на его разработку и создание были выделены значительные средства. Первые испытания прошли 16 июля 1945 года. Меньше, чем через месяц, США впервые применили ядерное оружие, сбросив две бомбы на Хиросиму и Нагасаки .

Собственные исследования в области ядерной физики в СССР велись с 1918 года. Комиссия по атомному ядру была создана в 1938 году при Академии наук. Однако с началом войны ее деятельность в данном направлении была приостановлена.

В 1943 году сведения о научных трудах в ядерной физике были получены советскими разведчиками из Англии. Были внедрены агенты в несколько исследовательских центров США. Добываемые ими сведения позволили ускорить разработку собственного ядерного оружия.

Изобретение советской атомной бомбы было возглавлено И. Курчатовым и Ю. Харитоном, они и считаются создателями советской атомной бомбы. Информация об этом стала толчком для подготовки США к упреждающей войне. В июле 1949 года был разработан план «Троян», по которому планировалась начать военные действия 1 января 1950 г.

Позже дата была перенесена на начало 1957 с учетом того, чтобы все страны НАТО могли подготовиться и включиться в войну. По данным западной разведки, испытание ядерного оружия в СССР могло быть проведено не раньше 1954 года.

Однако о подготовке США к войне стало известно заранее, что заставило советских ученых ускорить исследования. В короткие сроки они изобретают и создают собственную ядерную бомбу. 29 августа 1949 г. в Семипалатинске на полигоне испытана первая советская атомная бомба РДС-1 (реактивный двигатель специальный).

Подобные испытания сорвали план «Троян». С этого момента США перестали обладать монополией на ядерное оружие. Вне зависимости от силы упреждающего удара, оставался риск ответных действий, что грозило катастрофой. С этого момента самое страшное оружие стало гарантом мира между великими державами.

Принцип работы

Принцип работы атомной бомбы основан на цепной реакции распада тяжелых ядер или термоядерном синтезе легких. В ходе данных процессов выделяется огромное количество энергии, которая и превращает бомбу в оружие массового поражения.

24 сентября 1951 года были проведены испытания РДС-2. Их уже можно было доставить до точек запуска так, чтобы они доставали до США. 18 октября была испытана РДС-3, доставляемая бомбардировщиком.

Дальнейшие испытания перешли к термоядерному синтезу. Первые испытания подобной бомбы в США прошли 1 ноября 1952 года. В СССР такая боеголовка была испытана уже через 8 месяцев.

ТХ ядерной бомбы

Ядерные бомбы не имеют четких характеристик ввиду разнообразия применения подобных боеприпасов. Однако существует ряд общих аспектов, обязательно учитываемых при создании данного оружия.

К таковым относят:

  • осесимметричное строение бомбы - все блоки и системы размещаются попарно в контейнерах цилиндрической, сфероцилиндрической или конической формы;
  • при проектировании сокращают массу ядерной бомбы за счет объединения силовых узлов, выбора оптимальной формы оболочек и отсеков, а также применения более прочных материалов;
  • минимизируют количество проводов и разъемов, а для передачи воздействия применяют пневмопровод или взрыводетанирующий шнур;
  • блокировка основных узлов осуществляется с помощью перегородок, разрушаемых пирозарядами;
  • активные вещества закачиваются с помощью отдельного контейнера или внешнего носителя.

С учетом требований к устройству, ядерная бомба состоит из следующих комплектующих:

  • корпус, обеспечивающий защиту боеприпаса от физического и теплового воздействия - разделен на отсеки, может комплектоваться силовой рамой;
  • ядерный заряд с силовым креплением;
  • система самоликвидации с ее интеграцией в ядерный заряд;
  • источник питания, рассчитанный на длительное хранение -приводится в действие уже при запуске ракеты;
  • внешние датчики - для сбора информации;
  • системы взведения, управления и подрыва, последняя внедрена в заряд;
  • системы диагностики, подогрева и поддержания микроклимата внутри герметичных отсеков.

В зависимости от типа ядерной бомбы, в нее интегрируют и другие системы. Среди таких может быть датчик полета, пульт блокировки, расчет полетных опций, автопилот. В некоторых боеприпасах применяются и постановщики помех, рассчитанные на снижение противодействия ядерной бомбе.

Последствия применения такой бомбы

«Идеальные» последствия применения ядерного оружия были зафиксированы уже при сбросе бомбы на Хиросиму. Заряд взорвался на высоте 200 метров, что вызвало сильную ударную волну. Во многих домах были опрокинуты печки, отапливаемые углем, что привело к пожарам даже за пределами зоны поражения.

За световой вспышкой пошел тепловой удар, длившийся считаные секунды. Однако его мощности хватило, чтобы в радиусе 4 км расплавить черепицу и кварц, а также распылить телеграфные столбы.

За тепловой волной последовала ударная. Скорость ветра достигала 800 км/ч, его порыв разрушил практически все постройки в городе. Из 76 тыс. зданий, частично уцелело около 6 тыс., остальные были разрушены полностью.

Тепловая волна, а также поднявшийся пар и пепел вызвали сильный конденсат в атмосфере. Через несколько минут пошел дождь с черными от пепла каплями. Их попадание на кожу вызывало сильные неизлечимые ожоги.

Люди, находившиеся в пределах 800 метров от эпицентра взрыва, были сожжены в пыль. Оставшиеся подверглись воздействию радиации и лучевой болезни. Ее признаками стали слабость, тошнота, рвота, лихорадка. В крови наблюдалось резкое снижение количества белых телец.

За секунды было убито около 70 тыс. человек. Еще столько же впоследствии погибло от полученных ран и ожогов.

Через 3 дня еще одна бомба была сброшена на Нагасаки с аналогичными последствиями.

Запасы ядерного оружия в мире

Основные запасы ядерного оружия сосредоточены у России и США. Помимо них, атомные бомбы есть у следующих стран:

  • Великобритания - с 1952 года;
  • Франция - с 1960;
  • Китай - с 1964;
  • Индия - с 1974;
  • Пакистан - с 1998;
  • КНДР - с 2008.

Ядерным оружием обладает и Израиль, хотя официального подтверждения от руководства страны так и не поступало.

Бомбы США есть на территории стран, входящих в состав НАТО: Германия, Бельгия, Нидерланды, Италия, Турция и Канада. Они есть и у союзников США - Японии и Южной Кореи, хотя официально страны отказались от расположения ядерного оружия на своей территории.

После распада СССР ядерное оружие непродолжительное время было у Украины, Казахстана и Белоруссии. Однако позже оно было передано России, что сделало ее единственной наследницей СССР по части ядерного вооружения.

Количество атомных бомб в мире менялось на протяжении второй половины XX — начала XXI века:

  • 1947 - 32 боеголовки, все у США;
  • 1952 - около тысячи бомб у США и 50 - у СССР;
  • 1957 - более 7 тыс. боеголовок, ядерное оружие появляется у Великобритании;
  • 1967 - 30 тыс. бомб, включая вооружение Франции и Китая;
  • 1977 - 50 тыс., включая боеголовки Индии;
  • 1987 - около 63 тыс., - наибольшая концентрация ядерного вооружения;
  • 1992 - менее 40 тыс. боеголовок;
  • 2010 - около 20 тыс.;
  • 2018 - около 15 тыс.

Следует учитывать, что в данные подсчеты не включается тактическое ядерное оружие. Таковое обладает меньшей степенью поражения и разнообразие в носителях и применении. Значительные запасы подобного оружия сосредоточены у России и США.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Уже более 50 лет человечество использует энергию мирного атома. Но проникновение в тайны атомных ядер привело и к созданию невиданного по своей мощности и последствиям оружию массового уничтожения. Речь идет о ядерном оружии. Сегодняшняя наша встреча посвящена видам, устройству и принципу его действия. Вы узнаете, чем грозит миру применение ядерных боеприпасов и как человечество борется против ядерной угрозы.

Как все начиналось

Рождение атомной эры в истории человеческой цивилизации связано с началом второй мировой войны. За год до её начала была открыта возможность реакции деления ядер тяжелых элементов, сопровождаемая выделением колоссальной энергии. Это дало возможность создания совершенно нового вида оружия, обладающего невиданной доселе разрушительной силой.

Правительства ряда стран, включая США и Германию, привлекали к реализации этих планов лучшие научные умы и не жалели средств, для того, чтобы добиться приоритета в этой сфере. Успехи нацистов в расщеплении урана побудили Альберта Эйнштейна перед началом войны обратиться с письмом к президенту США. В этом послании он предупреждал об опасности, которая грозит человечеству, если в военном арсенале нацистов появится атомная бомба.

Фашистские войска одну за другой оккупировали европейские страны. Началась вынужденная эмиграция учёных-атомщиков в США из этих стран. И в 1942 году в пустынных районах штата Нью-Мексико начал свою работу ядерный центр. Здесь собрались лучшие физики почти со всей западной Европы. Руководство этим коллективом осуществлял талантливый американский ученый Роберт Оппенгеймер.

Мощные бомбардировки Англии немецкой авиацией вынудили английское правительство добровольно передать все разработки и ведущих специалистов в этой области США. Стечение всех этих обстоятельств позволило американской стороне занять ведущее положение в создании ядерного оружия. К весне 1944 года работы были завершены. После полигонных испытаний было решено нанести ядерные удары по японским городам.

Первыми 6 августа 1945 года познали весь ужас ядерного удара жители Хиросимы. Живые существа за одно мгновение превратились в пар. А через 3 дня на головы ничего не подозревающих жителей города Нагасаки была сброшена вторая бомба под кодовым названием «Толстяк». Только тени на асфальте остались от 70 тысяч человек, бывших в это время на улице. Всего погибли более 300 000 человек, и 200 000 получили страшные ожоги, ранения и громадные дозы облучения.

Результаты этой бомбардировки потрясли мир.

Понимая всю опасность, возникшую для послевоенного мира, Советский Союз начал активнейшую деятельность по созданию эквивалентного оружия. Это были вынужденные меры, для противостояния возникшей угрозе. Курировал эту работу сам глава НКВД Лаврентий Берия. За 3,5 года он сумел в разрушенной войной стране создать совершенно новую отрасль - атомную промышленность. Научная часть была возложена на молодого советского физика-ядерщика И. В. Курчатова. В результате титанических усилий многих коллективов ученых, инженеров и других работников за четыре послевоенных года была создана первая советская атомная бомба. Она прошла успешные испытания на полигоне Семипалатинска. Упования Пентагона на монопольное владение атомным оружием не оправдались.

Виды и доставка ядерных боеприпасов

К ядерному оружию относятся боеприпасы, принцип действия которых основан на использовании ядерной энергии. Физические принципы её получения изложены в .

К таким боеприпасам относятся атомные и водородные бомбы, а также нейтронное оружие. Все перечисленные виды вооружения являются оружием массового уничтожения.

Ядерные боеприпасы устанавливаются на баллистических ракетах, авиабомбах, фугасах, торпедах и артиллерийских снарядах. К предполагаемой цели они могут доставляться крылатыми, зенитными и баллистическими ракетами, а также авиацией.

Сейчас таким оружием обладают 9 государств, в общей сложности это более 16 тысяч единиц разных видов ядерного оружия. Использование даже 0,5% этого запаса способно погубить все человечество.

Атомные бомбы

Главное различие атомного реактора и атомной бомбы состоит в том, что в реакторе течение ядерной реакции контролируется и регулируется, а при ядерном взрыве её выделение происходит практически мгновенно.

Внутри корпуса бомбы находится расщепляемый материал U-235 или Pu-239. Его масса должна превышать некое критическое значение, но до осуществления ядерного взрыва делящееся вещество разделено на две или более частей. Для начала ядерной реакции необходимо привести эти части в соприкосновение. Это осуществляется химическим взрывом тротилового заряда. Образовавшаяся при этом взрывная волна сближает все части расщепляемого материала, доводя его массу до сверхкритического значения. Для U-235 критическая масса составляет 50 кг, а для Pu–239 она равна 11 кг.

Чтобы представить всю разрушительную мощь этого оружия, достаточно представить себе, что взрыв лишь 1 кг урана, эквивалентен взрыву 20 килотонн тротилового заряда.

Для начала деления ядер необходимо воздействие нейтронов и в атомных бомбах предусмотрен их искусственный источник. Для уменьшения массы и размера расщепляемого материала, используют внутреннюю оболочку из бериллия или графита, отражающую нейтроны.

Время взрыва длиться лишь миллионные доли секунды. Однако в его эпицентре развивается температура в 10 8 К, а давление достигает фантастического значения в 10 12 атм.

Устройство и механизм действия термоядерного оружия

Противостояние США и СССР в создании сверхоружия, происходило с переменным успехом.

Особенное значение придавалось использованию энергии термоядерного синтеза, подобное тому, которое происходят на Солнце и других звездах. В их недрах происходит слияние ядер изотопов водорода, сопровождающееся образованием новых более тяжелых ядер (например, гелия) и выделением колоссальной энергии. Необходимым условием для запуска процесса термоядерного синтеза является температура в миллионы градусов и высокое давление.

Разработчики водородных бомб остановились на следующей конструкции: в корпусе располагается плутониевый запал (атомная бомба малой мощности) и ядерное горючее - соединение изотопа лития-6 с дейтерием.

Взрыв маломощного плутониевого заряда создает необходимое давление и температуру, а испускаемые при этом нейтроны, взаимодействуя с литием, образуют тритий. Синтез дейтерия и трития приводит к термоядерному взрыву со всеми вытекающими последствиями.

На этом этапе победу одержали советские ученые. «Отцом» теории водородной бомбы в Советском Союзе явился .

После ядерного взрыва

После ослепительно яркой вспышки атомного наземного взрыва образуется огромное грибовидное облако. Исходящее от него световое излучение вызывает возгорание построек, техники и растительности. Люди и животные получают ожоги разной степени, а также необратимые поражения органов зрения.

Тело ядерного гриба образуется благодаря нагретому взрывом воздуху. Воздушные массы, стремительно закручиваясь, взмывает до высоты 15-20 км, увлекая за собой частички пыли и дыма. Почти мгновенно образуется ударная волна - область огромного давления и температуры в десятки тысяч градусов. Она перемещается со скоростью в несколько раз превышающей скорость звука, сметая все на своем пути.

Следующий поражающий фактор - это проникающая радиация, состоящая из потоков гамма излучения и нейтронов. Радиация ионизирует клетки живых существ, поражая нервную систему и мозг. Время ее воздействия 10-15 секунд, а дальность 2-3 км от эпицентра взрыва.

На расстояние в сотни километров наблюдается радиоактивное загрязнение местности. Оно состоит из осколков деления ядерного горючего и усугубляется выпадением радиоактивных осадков. Интенсивность радиоактивного заражения максимальна после взрыва, но по истечению вторых суток ослабевает почти в 100 раз.

Вездесущие нейтроны, ионизируя воздух, порождают кратковременный электромагнитный импульс, который способен вывести из строя электронную аппаратуру, нарушить проводную и беспроводную системы связи.

Ядерное оружие называют оружием массового поражения, поскольку оно несет огромнейшие человеческие жертвы и разрушения непосредственно во время и сразу после взрыва. Радиация, полученная людьми и животными, оказавшимися в зоне поражения, становится причиной лучевой болезни, часто завершающейся гибелью всех облученных существ.

Нейтронное оружие

Разновидностью термоядерного оружия являются нейтронные боеприпасы. В них отсутствует оболочка, поглощающая нейтроны и помещен дополнительный источник этих частиц. Поэтому их главным поражающим фактором является проникающая радиация. Её воздействие приводит к гибели людей, оставляя почти нетронутыми постройки и технику противника.

Борьба мирового сообщества против ядерной угрозы

Совокупный запас ядерного оружия в мире сейчас эквивалентен 1 млн бомб сброшенных на Хиросиму. И тот факт, что пока удаётся жить без ядерной войны во многом заслуга ООН и всего мирового сообщества.

Страны владеющие ядерным оружием, входят в так называемый «Ядерный клуб». Сейчас он насчитывает 9 участников. Этот список расширяется.

СССР занял в ядерной политике очень чёткую позицию. В 1963 году именно в Москве был подписан договор, запрещающий испытания ядерного оружия в 3-х средах: в атмосфере, космосе и под водой.

Более всеобъемлющий договор был принят на ассамблее ООН в 1996 году. Свои подписи по ним поставили уже 131 государство.

Создана специальная комиссия, осуществляющая контроль над событиями, связанными с ядерными испытаниями. Несмотря на предпринимаемые усилия, ряд государств продолжают проводить ядерные испытания. Мы с вами стали свидетелями того, как Северная Корея провела шесть испытаний ядерного оружия. Она использует свой ядерный потенциал как акт устрашения и попытку занять господствующее положение в мире.

Российская федерация сейчас занимает второе место в мире по ядерному потенциалу. Ядерные силы России состоят из наземного, авиационного и морского компонента. Но в отличие от КНДР военная мощь нашей страны служит фактором сдерживания, обеспечивающим мирное развитие государства.

Если это сообщение тебе пригодилось, буда рада видеть тебя

В истории лишь дважды произошли случаи применения ядерного оружия, оба из которых имели общие признаки -- ядерное оружие было применено:
-- против гражданского населения
-- с нанесением предельного разрушения гражданским объектам (городам Хиросима и Нагасаки)
-- с расчетом, что массовая гибель населения нанесет психологический урон противнику -- т.е. ядерный удар был произведен не столько по военным целям сколько по населению.

Оба раза ядерное оружие было применено США -- 6 и 9 августа.
6 августа 1945 года военные силы США совершили ядерный удар по Хиросиме.

Вики пишет, что всё могло бы сложиться иначе, не проведи военный министр США Генри Стимсон когда-то свой медовый месяц в Киото — ведь этот город вместе с Йокогамой, Кокурой, Ниигату и Нагасаки был в числе точек, предложенных комитетом по выбору целей для нанесения первого в истории боевого ядерного удара.

Стимсон отверг план бомбардировки Киото из-за культурной ценности последнего, и целью была выбрана Хиросима — город и военный порт с населением около 245 тыс. человек на момент удара.

США наносили удар не только и не столько с целью разрушений военных объектов, сколько с целью произвести психологический эффект на мировое сообщество и на правительство Японии - ведь подобное оружие применялось первый раз. Масштаб разрушений должен был продемонстрировать военную мощь США и подтолкнуть японские власти к безоговорочной капитуляции - что в итоге и произошло. События в Хиросиме унесли, по разным оценкам, от 140 до 200 тысяч человек -- примерно 70-80 тысяч человек погибли одновременно , в момент взрыва бомбы, причем из этого числа погибших еще несколько десятков тысяч непосредственно вблизи огненного шара просто исчезли в доли секунды, распавшись на молекулы в раскаленном воздухе: температура под плазменным шаром достигала 4000 градусов Цельсия. Находившиеся ближе всего к эпицентру взрыва погибли мгновенно, их тела обратились в уголь.

6 августа, после получения известия об успешном проведении атомной бомбардировки Хиросимы, президент США Трумэн заявил:
"Мы сейчас готовы уничтожить, ещё быстрее и полнее, чем раньше, все наземные производственные мощности японцев в любом городе... Если они не примут сейчас наши условия, пусть ожидают дождь разрушений с воздуха, подобного которому ещё не было на этой планете".

Несмотря на то, что сразу после бомбардировки Хиросимы стал понятен масштаб разрушений и ужас последствий, 9 августа был нанесен еще один ядерный удар.
Вторая атомная бомбардировка (Кокуры) была запланирована на 11 августа, однако была перенесена на 2 дня раньше.
9 августа бомбили Нагасаки -- количество погибших к концу 1945 года в результате этой бомбардировки с учётом умерших от рака и других долгосрочных воздействий взрыва оценивается в 140 тысяч человек.

Япония оценивает общее количество жертв, погибших в результате бомбардировки и лучевой болезни: 286 818 в Хиросиме и 162 083 в Нагасаки.

США были изготовлены две новые бомбы "Малыш" и "Толстяк": одна, использовавшая уран, другая — плутоний, с различными пусковыми устройствами для каждой. Главными исследовательскими и производственными центрами были: Лос-Аламос (Нью-Мексико), Хэнфорд (Вашингтон), Ок-Ридж (Теннеси).

Их-то и сбросили -- неизвестно чем бы обернулась вся эта история, если бы под рукой у руководства США к начала августа 1945 года был бы хотя бы десяток ядерных бомб.

Массовое производство наладят чуть позже, но это совсем другая история

Правительство США ожидало, что ещё одна атомная бомба будет готова к использованию в середине августа, и ещё по три — в сентябре и октябре.
============

Ряд исследователей высказывают мнение, что основной целью атомных бомбардировок было повлиять на СССР перед его вступлением в войну с Японией на Дальнем Востоке и продемонстрировать атомную мощь США.

6 августа 2015 года, в годовщину бомбардировок, внук президента Трумэна — Клифтон Трумэн Дэниел заявил, что «дед до конца жизни считал, что решение сбросить бомбу на Хиросиму и Нагасаки было верным, и США никогда не попросят прощения за это» .
=================
До 2015 года большинство американцев поддерживали решения правительства США о ядерных бомбардировках.

В 2016 году количество поддерживающих бомбардировки, в результате которых погибло свыше 400 тысяч человек поддерживали 43% американцев.

Поэтому когда сейчас раздаются призывы к уничтожению ядерного оружия (Япония регулярно призывает к этому).
мэр города Хиросимы Кадзуми Мацуи:
"Барак Обама, первым из действующих президентов США посетивший Хиросиму, сказал: "Страны, обладающие ядерным оружием, как моя страна, должны найти в себе смелость уйти от логики страха и добиваться мира без ядерного оружия". Это стало знаком того, что до президента Обамы дошли мысли и чувства Хиросимы. Сейчас необходимо, основываясь на чувствах Хиросимы, со страстью и в солидарности приступить к действиям, чтобы найти пути, как избавить мир от этого антигуманного "абсолютного зла" в виде ядерного оружия"

Мэра г.Хиросимы Казуми Мацуи каждый год произносит прочувственные речи о ядерном разоружении, попутно восхваляя своего вечного союзника США и иногда укоряя Россию, что она не столь быстро идет к ядерному разоружению.

Постоянно делается упор на Декларацию мира, которая призывает принять конвенцию, чтобы к 2020 году полностью избавиться от ядерного оружия.

Я уже писами письмо Казуми Мацуи, которое можно повторить в эти августовские дни:

"Дорогой Казуми Мацуи, мы искренне сочувствуем японцам.
Мы категорически против войны, но вот в чем загвоздка -- уже вполне открыто звучат слова о том, что если бы не ядерное оружие, Россию бы уже давно научили, как устраивать сотрудничество с Украиной, как строить свою внутреннюю (пока крайне несовершенную) политику и давили бы не санкциями, а вероятно чем-то иным.

Если бы война, всё еще гарантирующая взаимоуничтожение, была бы возможна, то некоторые страны не церемонились бы с такой трудоёмкой процедурой, как санкции и прочее, а слопали бы целиком.

Понимаете, Казуми, пока у России есть ядерное оружие, с ней не очень хотят воевать и будут стараться резать её по-другому.

Подумайте, Казуми, как скоро, после того, как здесь у нас распилят последнюю ядерную боеголовку, нам тут же уверенно укажут на путь великого пацифизма и демократии, от которого мы не сможем отказаться?
На следующий день? Через месяц?

Ох, Казуми, Казуми, как ты думаешь, разбомбили бы твой город, если бы у тебя за пазухой был ядрён батон?
Рассказывал бы ты сейчас снова о том, как в ядерном облаке сгорали дети Хиросимы?

Как ты думаешь, много ли стран обладало ядерным оружием, когда состоялся единственный в истории акт уничтожения мирного населения ядерным оружием?

О, наивный Казуми, американские военные на форумах, бахвалясь о том, как совершенны войска США и несовершенны российские (что их даже можно разгромить в 24 часа) и почти всегда упоминают, что About the only trump card that Russia has is nukes.

Спасительной козырной картой Россия является то, что она имеет ядерное оружие -- вот, что говорят американские военные между собой.

Теперь, о, добрый Казуми Мацуи, ты можешь сам догадаться, что мы можем посоветовать сделать с Декларацией мира и Конвенцией о полном ядерном разоружении к 2020 году, как тебе удобнее свернуть их трубочкой и как поудобнее засунуть в одно место.

После этой процедуры можно попросить вечного союзника Японии, бесповоротно раскаявшегося в злодеяниях, поджечь эти засунутые в одно место документы и резво попрыгать, как это делают не в меру ретивые союзники твоего вечного союзника, Казуми.

Ты можешь даже выучить слова, которые они при этом кричат.

Эти союзники очень эмоциональные, поэтому они иногда обсуждают, как лучше уничтожить своих неправильных сограждан, в т.ч. с помощью ядерного оружия.

Почему-то эта эмоциональность и тяга к миру никак не мешает твоему вечному союзнику открыто сочувствовать беспорядочным военным действиям в разных частях света, в результате которых уже погибли сотни тысяч мирных жителей".

Северная Корея угрожает США испытаниями сверхмощной водородной бомбы в Тихом океане. Япония, которая может пострадать из-за испытаний, назвала планы КНДР абсолютно неприемлемыми. Президенты Дональд Трамп и Ким Чен Ын ругаются в интервью и говорят об открытом военном конфликте. Для тех, кто не разбирается в ядерном оружии, но хочет быть в теме, «Футурист» составил путеводитель.

Как работает ядерное оружие?

Как и в обычной динамитной шашке, в ядерной бомбе используется энергия. Только высвобождается она не в ходе примитивной химической реакции, а в сложных ядерных процессах. Существует два основных способа выделения ядерной энергии из атома. В ядерном делении ядро ​​атома распадается на два меньших фрагмента с нейтроном. Ядерный синтез – процесс, с помощью которого Солнце вырабатывает энергию – включает объединение двух меньших атомов с образованием более крупного. В любом процессе, делении или слиянии выделяются большие количества тепловой энергии и излучения. В зависимости от того, используется деление ядер или их синтез, бомбы делятся на ядерные (атомные) и термоядерные .

А можно поподробнее про ядерное деление?

Взрыв атомной бомбы над Хиросимой (1945 г)

Как вы помните, атом состоит из трех типов субатомных частиц: протонов, нейтронов и электронов. Центр атома, называемый ядром , состоит из протонов и нейтронов. Протоны положительно заряжены, электроны – отрицательно, а нейтроны вообще не имеют заряда. Отношение протон-электрон всегда один к одному, поэтому атом в целом имеет нейтральный заряд. Например, атом углерода имеет шесть протонов и шесть электронов. Частицы удерживаются вместе фундаментальной силой – сильным ядерным взаимодействием .

Свойства атома могут значительно меняться в зависимости от того, сколько различных частиц в нем содержится. Если изменить количество протонов, у вас будет уже другой химический элемент. Если же изменить количество нейтронов, вы получите изотоп того же элемента, что у вас в руках. Например, углерод имеет три изотопа: 1) углерод-12 (шесть протонов + шесть нейтронов), стабильную и часто встречающуюся форму элемента, 2) углерод-13 (шесть протонов + семь нейтронов), который является стабильным, но редким и 3) углерод-14 (шесть протонов + восемь нейтронов), который является редким и неустойчивым (или радиоактивным).

Большинство атомных ядер стабильны, но некоторые из них неустойчивы (радиоактивны). Эти ядра спонтанно излучают частицы, которые ученые называют радиацией. Этот процесс называется радиоактивным распадом . Существует три типа распада:

Альфа-распад : ядро ​​выбрасывает альфа-частицу – два протона и два нейтрона, связанных вместе. Бета-распад : нейтрон превращается в протон, электрон и антинейтрино. Выброшенный электрон является бета-частицей. Спонтанное деление: ядро распадается на несколько частей и выбрасывает нейтроны, а также излучает импульс электромагнитной энергии – гамма-луч. Именно последний тип распада используется в ядерной бомбе. Свободные нейтроны, выброшенные в результате деления, начинают цепную реакцию , которая высвобождает колоссальное количество энергии.

Из чего делают ядерные бомбы?

Их могут делать из урана-235 и плутония-239. Уран в природе встречается в виде смеси трех изотопов: 238 U (99,2745 % природного урана), 235 U (0,72 %) и 234 U (0,0055 %). Наиболее распространенный 238 U не поддерживает цепную реакцию: на это способен лишь 235 U. Чтобы достичь максимальной мощности взрыва, необходимо, чтобы содержание 235 U в «начинке» бомбы составляло не менее 80%. Поэтому уран приходится искусственно обогащать . Для этого смесь урановых изотопов разделяют на две части так, чтобы в одной из них оказалось больше 235 U.

Обычно при разделении изотопов остается много обедненного урана, не способного вступить в цепную реакцию – но есть способ заставить его это сделать. Дело в том, что плутоний-239 в природе не встречается. Зато его можно получить, бомбардируя нейтронами 238 U.

Как измеряется их мощность?

​Мощность ядерного и термоядерного заряда измеряется в тротиловом эквиваленте - количестве тринитротолуола, которое нужно взорвать для получения аналогичного результата. Она измеряется в килотоннах (кт) и мегатоннах (Мт). Мощность сверхмалых ядерных боеприпасов составляет менее 1 кт, в то время как сверхмощные бомбы дают более 1 Мт.

Мощность советской «Царь-бомбы» составляла по разным данным от 57 до 58,6 мегатонн в тротиловом эквиваленте, мощность термоядерной бомбы, которую в начале сентября испытала КНДР, составила около 100 килотонн.

Кто создал ядерное оружие?

Американский физик Роберт Оппенгеймер и генерал Лесли Гровс

В 1930-х годах итальянский физик Энрико Ферми продемонстрировал, что элементы, подвергшиеся бомбардировке нейтронами, могут быть преобразованы в новые элементы. Результатом этой работы стало обнаружение медленных нейтронов , а также открытие новых элементов, не представленных на периодической таблице. Вскоре после открытия Ферми немецкие ученые Отто Ган и Фриц Штрассман бомбардировали уран нейтронами, в результате чего образовался радиоактивный изотоп бария. Они пришли к выводу, что низкоскоростные нейтроны заставляют ядро ​​урана разрываться на две более мелкие части.

Эта работа взбудоражила умы всего мира. В Принстонском университете Нильс Бор работал с Джоном Уилером для разработки гипотетической модели процесса деления. Они предположили, что уран-235 подвергается делению. Примерно в то же время другие ученые обнаружили, что процесс деления привел к образованию еще большего количества нейтронов. Это побудило Бора и Уилера задать важный вопрос: могли ли свободные нейтроны, созданные в результате деления, начать цепную реакцию, которая высвободила бы огромное количество энергии? Если это так, то можно создать оружие невообразимой силы. Их предположения подтвердил французский физик Фредерик Жолио-Кюри . Его заключение стало толчком для разработок по созданию ядерного оружия.

Над созданием атомного оружия трудились физики Германии, Англии, США, Японии. Перед началом Второй мировой войны Альберт Эйнштейн написал президенту США Франклину Рузвельту о том, что нацистская Германия планирует очистить уран-235 и создать атомную бомбу. Сейчас выяснилось, что Германия была далека от проведения цепной реакции: они работали над «грязной», сильно радиоактивной бомбой. Как бы то ни было, правительство США бросило все силы на создание атомной бомбы в кратчайшие сроки. Был запущен «Манхэттенский проект», которым руководили американский физик Роберт Оппенгеймер и генерал Лесли Гровс . В нем участвовали крупные ученые, эмигрировавшие из Европы. К лету 1945 года было создано атомное оружие, основанное на двух видах делящегося материала - урана-235 и плутония-239. Одну бомбу, плутониевую «Штучку», взорвали на испытаниях, а еще две, уранового «Малыша» и плутониевого «Толстяка» сбросили на японские города Хиросиму и Нагасаки.

Как работает термоядерная бомба и кто ее изобрел?


Термоядерная бомба основана на реакции ядерного синтеза . В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Атомные ядра заряжены положительно - поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре - порядка нескольких миллионов кельвинов (отсюда и название). Термоядерные реакции бывают трех видов: самоподдерживающиеся (проходят в недрах звезд), управляемые и неуправляемые или взрывные – они используются в водородных бомбах.

Идею бомбы с термоядерным синтезом, инициируемым атомным зарядом, предложил Энрико Ферми своему коллеге Эдварду Теллеру еще в 1941 году, в самом начале Манхэттенского проекта. Однако тогда эта идея оказалась не востребована. Разработки Теллера усовершенствовал Станислав Улам , сделав идею термоядерной бомбы осуществимой на практике. В 1952 году на атолле Эниветок в ходе операции Ivy Mike испытали первое термоядерное взрывное устройство. Однако это был лабораторный образец, непригодный в боевых действиях. Год спустя Советский Союз взорвал первую в мире термоядерную бомбу, собранную по конструкции физиков Андрея Сахарова и Юлия Харитона . Устройство напоминало слоёный пирог, поэтому грозное оружие прозвали «Слойкой». В ходе дальнейших разработок на свет появилась самая мощная бомба на Земле, «Царь-бомба» или «Кузькина мать». В октябре 1961 года ее испытали на архипелаге Новая Земля.

Из чего делают термоядерные бомбы?

Если вы думали, что водородные и термоядерные бомбы - это разные вещи, вы ошибались. Эти слова синонимичны. Именно водород (а точнее, его изотопы - дейтерий и тритий) требуется для проведения термоядерной реакции. Однако есть сложность: чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру - лишь тогда атомные ядра начнут реагировать. Поэтому в случае с термоядерной бомбой большую роль играет конструкция.

Широко известны две схемы. Первая - сахаровская «слойка». В центре располагался ядерный детонатор, который был окружен слоями дейтерида лития в смеси с тритием, которые перемежались со слоями обогащенного урана. Такая конструкция позволяла достичь мощности в пределах 1 Мт. Вторая - американская схема Теллера - Улама, где ядерная бомба и изотопы водорода располагались раздельно. Выглядело это так: снизу - емкость со смесью жидких дейтерия и трития, по центру которой располагалась «свеча зажигания» - плутониевый стержень, а сверху - обычный ядерный заряд, и все это в оболочке из тяжелого металла (например, обедненного урана). Быстрые нейтроны, образовавшиеся при взрыве, вызывают в урановой оболочке реакции деления атомов и добавляют энергию в общую энергию взрыва. Надстраивание дополнительных слоев дейтерида лития урана-238 позволяет создавать снаряды неограниченной мощности. В 1953 году советский физик Виктор Давиденко случайно повторил идею Теллера - Улама, и на ее основе Сахаров придумал многоступенчатую схему, которая позволила создавать оружие небывалых мощностей. Именно по такой схеме работала «Кузькина мать».

Какие еще бомбы бывают?

Еще бывают нейтронные, но это вообще страшно. По сути, нейтронная бомба - это маломощная термоядерная бомба, 80% энергии взрыва которой составляет радиация (нейтронное излучение). Это выглядит как обычный ядерный заряд малой мощности, к которому добавлен блок с изотопом бериллия - источником нейтронов. При взрыве ядерного заряда запускается термоядерная реакция. Этот вид оружия разрабатывал американский физик Сэмюэль Коэн . Считалось, что нейтронное оружие уничтожает все живое даже в укрытиях, однако дальность поражения такого оружия невелика, так как атмосфера рассеивает потоки быстрых нейтронов, и ударная волна на больших расстояниях оказывается сильнее.

А как же кобальтовая бомба?

Нет, сынок, это фантастика. Официально кобальтовых бомб нет ни у одной страны. Теоретически это термоядерная бомба с оболочкой из кобальта, которая обеспечивает сильное радиоактивное заражение местности даже при сравнительно слабом ядерном взрыве. 510 тонн кобальта способны заразить всю поверхность Земли и уничтожить все живое на планете. Физик Лео Силард , описавший эту гипотетическую конструкцию в 1950 году, назвал ее «Машиной судного дня».

Что круче: ядерная бомба или термоядерная?


Натурный макет «Царь-бомбы"

Водородная бомба является гораздо более продвинутой и технологичной, чем атомная. Ее мощность взрыва намного превосходит атомную и ограничена только количеством имеющихся в наличии компонентов. При термоядерной реакции на каждый нуклон (так называются составляющие ядра, протоны и нейтроны) выделяется намного больше энергии, чем при ядерной реакции. К примеру, при делении ядра урана на один нуклон приходится 0,9 МэВ (мегаэлектронвольт), а при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ.

Как бомбы доставляют до цели?

Поначалу их сбрасывали с самолетов, однако средства противовоздушной обороны постоянно совершенствовались, и доставлять ядерное оружие таким образом оказалось неразумным. С ростом производства ракетной техники все права на доставку ядерного оружия перешли к баллистическим и крылатым ракетам различного базирования. Поэтому под бомбой теперь подразумевается не бомба, а боеголовка.

Есть мнение, что северокорейская водородная бомба слишком большая , чтобы ее можно было установить на ракете - поэтому, если КНДР решит воплотить угрозу в жизнь, ее повезут на корабле к месту взрыва.

Каковы последствия ядерной войны?

Хиросима и Нагасаки - это лишь малая часть возможного апокалипсиса. ​Например, известна гипотеза "ядерной зимы", которую выдвигали американский астрофизик Карл Саган и советский геофизик Георгий Голицын. Предполагается, что при взрыве нескольких ядерных боезарядов (не в пустыне или воде, а в населенных пунктах) возникнет множество пожаров, и в атмосферу выплеснется большое количество дыма и сажи, что приведет к глобальному похолоданию. Гипотезу критикуют, сравнивая эффект с вулканической активностью, которая оказывает незначительный эффект на климат. Кроме того, некоторые ученые отмечают, что скорее наступит глобальное потепление,чем похолодание - впрочем, обе стороны надеются, что мы этого никогда не узнаем.

Разрешено ли использовать ядерное оружие?

После гонки вооружений в XX веке страны одумались и решили ограничить использование ядерного оружия. ООН были приняты договоры о нераспространении ядерного оружия и запрещении ядерных испытаний (последний не был подписан молодыми ядерными державами Индией, Пакистаном, и КНДР). В июле 2017 года был принят новый договор о запрещении ядерного оружия.

"Каждое государство-участник обязуется никогда и ни при каких обстоятельствах не разрабатывать, не испытывать, не производить, не изготавливать, не приобретать иным образом, не иметь во владении и не накапливать ядерное оружие или другие ядерные взрывные устройства," - гласит первая статья договора.

Однако документ не вступит в силу до тех пор, пока его не ратифицируют 50 государств.