Меню
Бесплатно
Главная  /  Женские проблемы  /  Эволюционное дерево животных. Эволюционное древо гоминид

Эволюционное дерево животных. Эволюционное древо гоминид

Эукариотические организмы, специализирующиеся на гетеротрофном питании, дали начало Животным и Грибам.

В протерозойской эре возникают все известные типы Многоклеточных беспозвоночных животных. Существует две основные теории происхождения многоклеточных животных. Согласно теории гастреи (Э. Геккель), исходным способом формирования двуслойного зародыша является инвагинация (впячивание стенки бластулы). Согласно теории фагоцителлы (И. И. Мечников), исходным способом формирования двуслойного зародыша является иммиграция (перемещение отдельных бластомеров в полость бластулы). Возможно, эти две теории взаимно дополняют друг друга.

Кишечнополостные – представители наиболее примитивных (двуслойных) многоклеточных: их тело состоит всего из двух слоев клеток: эктодермы и энтодермы. Уровень дифференцировки тканей очень низкий.

У Низших червей (Плоские и Круглые черви) появляется третий зародышевый листок – мезодерма. Это крупный ароморфоз, благодаря которому появляются дифференцированные ткани и системы органов.

Затем эволюционное древо животных разветвляется на Первичноротых и Вторичноротых. Среди Первичноротых у Кольчатых червей образуется вторичная полость тела (целом). Это крупный ароморфоз, благодаря которому становится возможным разделение тела на отделы.

Кольчатые черви имеют примитивные конечности (параподии) и гомономную (равнозначную) сегментацию тела. Но в начале кембрия появляются Членистоногие, у которых параподии преобразованы в членистые конечности. У Членистоногих появляется гетерономная (неравнозначная) сегментация туловища. У них имеется хитиновый наружный скелет, который способствует появлению дифференцированных пучков мышц. Перечисленные особенности Членистоногих являются ароморфозами.

Наиболее примитивные Членистоногие – Трилобитообразные – господствовали в палеозойских морях. Современные Жабродышащие первичноводные членистоногие представлены Ракообразными. Однако в начале девона (после выхода на сушу растений и формирования наземных экосистем) происходит выход на сушу Паукообразных и Насекомых.

Насекомые наиболее приспособлены к жизни на суше, благодаря появлению крупных ароморфозов:

– Наличие зародышевых оболочек – серозной и амниотической.

– Наличие крыльев.

– Пластичность ротового аппарата.

С появлением Цветковых растений в меловом периоде начинается совместная эволюция Насекомых и Цветковых (коэволюция), и у них формируются совместные адаптации (коадаптации). В кайнозойской эре Насекомые, как и Цветковые растения, находятся в состоянии биологического прогресса.


Среди Вторичноротых животных наивысшего расцвета достигают Хордовые животные, у которых появляется ряд крупных ароморфозов: хорда, нервная трубка, брюшная аорта (а затем – сердце).

От примитивных Хордовых животных в силуре происходят первые Позвоночные (Бесчелюстные). У позвоночных формируется осевой и висцеральный скелет, в частности, мозговая коробка и челюстной отдел черепа, что также является ароморфозом. Низшие Челюстноротые позвоночные представлены разнообразными Рыбами. Современные классы рыб (Хрящевые и Костные) формируются в конце палеозоя – начале мезозоя).

Часть Костных рыб (Мясистолопастные), благодаря двум ароморфозам – легочному дыханию и появлению настоящих конечностей – дала начало первым Четвероногим – Амфибиям (Земноводным). Первые Земноводные вышли на сушу в девонском периоде, но их расцвет приходится на каменноугольный период (многочисленные стегоцефалы). Современные Амфибии появляются в конце юрского периода.

Параллельно среди Четвероногих появляются организмы с зародышевыми оболочками – Амниоты. Наличие зародышевых оболочек – крупный ароморфоз, который впервые появляется у Рептилий. Благодаря зародышевым оболочкам, а также ряду других признаков (ороговевающий эпителий, тазовые почки, появление коры больших полушарий) Рептилии полностью утратили зависимость от воды. Появление первых примитивных рептилий – котилозавров – относится к концу каменноугольного периода. В перми появляются разнообразные группы рептилий: зверозубые, первоящеры и другие. В начале мезозоя формируются ветви черепах, плезиозавров, ихтиозавров. Начинается расцвет рептилий.

От групп, близких к первоящерам, отделяются две ветви эволюционного развития. Одна ветвь в начале мезозоя дала начало многочисленной группе псевдозухий. Псевдозухии дали начало нескольким группам: крокодилы, птерозавры, предки птиц и динозавры, представленные двумя ветвями: ящеротазовые (бронтозавр, диплодок) и птицетазовые (только растительноядные виды – стегозавр, трицератопс). Вторая ветвь в начале мелового периода привела к появлению подкласса чешуйчатых (ящерицы, хамелеоны и змеи).

Однако Рептилии не смогли утратить зависимость от низких температур: теплокровность у них невозможна из-за неполного разделения крови на венозную и артериальную. В конце мезозоя с изменением климата происходит массовое вымирание рептилий.

Лишь у части псевдозухий в юрском периоде появляется полная перегородка между желудочками, редуцируется левая дуга аорты, происходит полное разделение кругов кровообращения, и становится возможной теплокровность. В дальнейшем эти животные приобрели ряд адаптаций к полету и дали начало классу Птицы.

В юрских отложениях мезозойской эры (≈ 150 млн. лет назад) обнаружены отпечатки Первоптиц: археоптерикса и археорниса (три скелета и одно перо). Вероятно, это были древесно-лазающие животные, которые могли планировать, но не были способны к активному полету. Еще раньше (в конце триаса, ≈ 225 млн. лет назад) существовал протоавис (два скелета обнаружены в 1986 году в Техасе). Скелет протоависа существенно отличался от скелета рептилий, большие полушария мозга и мозжечок были увеличены в размерах. В меловом периоде существовали две группы ископаемых птиц: ихтиорнисы и гесперорнисы. Современные группы птиц появляются только в начале кайнозойской эры.

Существенным ароморфозом в эволюции птиц можно считать появление четырехкамерного сердца в сочетании с редукцией левой дуги аорты. Произошло полное разделение артериальной и венозной крови, что сделало возможным дальнейшее развитие головного мозга и резкое повышение уровня обмена веществ. Расцвет Птиц в кайнозойской эре связан с рядом крупных идиоадаптаций (появление перьевого покрова, специализация опорно-двигательного аппарата, развитие нервной системы, забота о потомстве и способность к перелетам), а также с рядом признаков частичной дегенерации (например, утрата зубов).

В начале мезозойской эры появляются первые Млекопитающие, которые возникли благодаря целому ряду ароморфозов: увеличенные полушария переднего мозга с развитой корой, четырехкамерное сердце, редукция правой дуги аорты, преобразование подвеска, квадратной и сочленовой костей в слуховые косточки, появление шерстного покрова, млечных желез, дифференцированных зубов в альвеолах, предротовой полости.

В юрском периоде мезозойской эры Млекопитающие были представлены, как минимум, пятью классами (Многобугорчатые, Трехбугорчатые, Трикодонты, Симметродонты, Пантотерии). Один из этих классов, вероятно, дал начало современным Первозверям, а другой – Сумчатым и Плацентарным. Плацентарные млекопитающие, благодаря появлению плаценты и настоящего живорождения, в кайнозойской эре переходят в состояние биологического прогресса.

Исходным отрядом Плацентарных являются Насекомоядные. От Насекомоядных рано отделились Неполнозубые, Грызуны, Приматы и ныне вымершая группа Креодонтов – примитивных хищников. От Креодонтов отделились две ветви. Одна из этих ветвей дала начало современным Хищным, от которых отделились Ластоногие и Китообразные. Другая ветвь дала начало примитивным копытным (Кондилартрам), а затем Непарнокопытным, Парнокопытным и родственным отрядам.

Окончательная дифференцировка современных групп Млекопитающих завершилась в эпоху великих оледенений – в плейстоцене. На современный видовой состав Млекопитающих значительное влияние оказывает антропогенный фактор. В историческое время были истреблены: тур, стеллерова корова, тарпан и другие виды.

В конце кайнозойской эры у части Приматов возникает особый тип ароморфоза – переразвитие коры больших полушарий головного мозга. В результате возникает совершенно новый вид организмов – Человек разумный.

Эволюция не сводится только к поступательному движению вверх по “лестнице” прогресса. Ведь условия среды обитания чрезвычайно разнообразны, поэтому не обязательно все время стремиться к повышению уровня организации. Можно просто уходить от конкуренции с другими организмами, осваивая еще незанятые “ячейки” в сообществах живых организмов — экологические ниши. Этот процесс называют “дивергенцией”: близкие виды в ходе эволюции как бы “расходятся” в разные стороны, вырабатывая специальные приспособления к определенным условиям среды.

Если пытаться изобразить процесс расхождения видов по разным жизненным зонам и экологическим нишам, то ничего лучше “эволюционного древа” не придумаешь. Растущий вверх “ствол” — это и есть основное направление эволюционного прогресса млекопитающих, означающее повышение уровня их организации. А расходящиеся вбок ветви и веточки и есть не что иное, как дивергенция видов.

Сначала на стволе появляется крошечный побег: это возник новый вид, пытающий свое счастье в эволюции. Если ему повезет, он не вымрет из-за каких-либо пертурбаций: зачаточный побег не “засохнет”, а превратится в небольшую веточку. В новых благоприятных условиях, еще никем не занятых, появляется все больше и больше потомков того предково-го вида: ветка все больше ветвится, становится толще. И в конце концов оказывается, что удачливый вид-основатель “нашел” новое, весьма перспективное направление эволюции: побег превращается в то, что садоводы назвали бы “скелетной ветвью” звериного древа жизни. Так, например, около 10 миллионов лет назад какие-то из зерноядных хомяков перешли на питание травой: это оказалось настолько удачным, что их потомки — полёвки — по разнообразию и обилию многократно превзошли своих предков.

Приспосабливаясь к новой среде обитания, потомки все больше теряют сходство со своими предками: они как бы “забывают” своих пращуров, живших в иных условиях. Утрачивается сходство и с “кузенами”, причем чем дальше виды “разошлись” в ходе эволюции по разным природным зонам, тем меньше между ними сходства. Ну кто бы мог сказать, глядя на порхающих в воздухе маленьких летучих мышей и плавающих в морских водах гигантов-китов, что все они — отдаленные потомки одних и тех же наземных зверьков, более всего похожих на ныне живущих землероек?

Эволюционное древо” прекрасно иллюстрирует не только ход исторического развития живых существ, но и устройство “Системы природы”. Оно чем-то напоминает устройство воинских частей: подобно полкам, ротам, взводам, в “Системе природы” есть разные уровни или ранги — классы, отряды, семейства и так далее. На “эволюционном древе” они соответствуют разным по “толщине” ветвям и отражают разную степень обособленности тех или иных групп животных. Говоря о животных, имеющих в системе определенный ранг, — о китообразных или тюленях, ежах или землеройках, мы можем охарактеризовать то, насколько давно отделилась и насколько далеко отошла данная ветвь от основного эволюционного ствола.

Так, если все звериное “древо” — это класс млекопитающих, то “скелетные ветви” — это отдельные отряды: например, отряд хищные, отряд парнокопытные. Они обособились, как правило, не менее 70-90 миллионов лет назад, каждый завоевал свою собственную адаптивную зону. Растущие на них более мелкие ветки — это семейства: например, в отряде хищных есть семейства медвежьих и кошачьих; в отряде парнокопытных — семейства полорогих и оленьих. Их эволюционный возраст — обычно 30-40 миллионов лет, каждое из семейств особым образом осваивает общую для отряда адаптивную зону. Например, в рацион медведей входят не только животные, но и растительные корма, а кошки питаются почти исключительно мясом.

Концевые веточки нашего “древа” — это отдельные роды: род медведей, род оленей и так далее. А они уже заканчиваются видами: бурый и белый медведи, лесной и степной коты, благородный и пятнистый олени. Возраст родов и видов млекопитающих обычно измеряется несколькими миллионами лет.

Пустынная зебра или зебра Греви, это один видов млекопитающих относящийся к лошадиному семейству. Свое название зебра получила в честь Жюля Греви – французского президента именно ему был подарен первый экземпляр этого животного. Вес этого животного достигает 430 кг, а длина всего тела может быть порядка 3 метров. Пустынная зебра это не только одна из самых…

Больше всего напоминают самых примитивных млекопитающих все те же землеройки. Эти зверьки почти ничем не примечательны, разве что своим обжорством: в сутки они съедают пищи больше, чем весят сами. Таков уж у этих крохотных созданий обмен веществ: они живут, чтобы есть. У разных видов вершины зубов окрашены по-разному. У одних землероек зубы все белые, таких…

Тропические леса Южной и Центральной Америки населяют так называемые широконосые обезьяны, которые по уровню развития стоят много выше полуобезьян. К ним относятся многочисленные игрунки, или мармозетки, — размером с белку, некоторые ярко раскрашенные (например, золотистая игрунка), некоторые с удлиненными в гриву волосами на голове или с “усами” (императорский тамарин). Их ближайшие родичи — цепкохвостые обезьяны….

Всем знакомый образ красавца оленя с огромными раскидистыми рогами на голове — верный, да не совсем. На самом деле, среди оленей и близких к ним парнокопытных животных довольно много безрогих. Одни из них — оленьки, самые архаичные представители жвачных. Так ласково-уменьшительно их называют за общее сходство с настоящими оленями и небольшие размеры: они чаще всего…

Среди усатых китов больше всего полосатиков. Свое название они получили за многочисленные продольные борозды-складки на нижней поверхности головы и передней части брюха: издали они кажутся полосами. В спокойном (сложенном) состоянии нижняя челюсть у полосатиков ненамного больше верхней. Но когда кит питается, он широко раскрывает пасть, складки расправляются и образуется огромный мешок, в который устремляются тонны…

И все-таки природа справедлива: обделяя одни свои творения цветовым зрением, она награждает их невероятной способностью чуять самые разные запахи. Взять ту же собаку: она живет в невероятно “красочном”, со множеством оттенков мире запахов, совершенно недоступном нам, людям. Для каждого животного определенный запах, присущий только ему, — это своего рода “паспорт” , опознавательная метка. Обратите внимание,…

В тундре Северной Америки живет копытное, которого, наверное, можно назвать самым мохнатым зверем на Земле, — овцебык. Столь странное название он получил за крупные размеры и вполне “баранью” голову, украшенную очень “плотно” сидящими рогами с расширенными сближенными основаниями (как у африканского буйвола). Шерсть у овцебыка действительно выдающаяся: необычайно густая, большую ее часть составляет тонкий подшерсток,…

Совсем иное дело — звери, которые рождают вполне сформировавшихся детенышей, способных проявлять известную самостоятельность чуть ли не в первые часы после рождения. Чтобы достичь такого результата, у этих животных, называемых “выводковыми”, в отличие от “птенцовых”, эмбриональное развитие столь продолжительно, что звереныш, прежде чем появиться на свет, успевает обзавестись всем необходимым для полноценной жизни. Например, у…

Эти небольшие симпатичные существа, живущие в Африке, к слонам никакого отношения не имеют. Долгое время их считали представителями насекомоядных, но в конце концов все-таки решили, что правильнее всего прыгунчиков выделить в отдельный отряд, настолько они своеобразны. А благодаря новейшим открытиям в палеонтологической летописи удалось установить, что их ближайшие родственники — никакие не насекомоядные, а грызуны…

Именно так — “четверорукими” — нередко называют наших ближайших сородичей в царстве животных. Правильно, это обезьяны с одинаково цепкими руками и ногами. А научное их название — приматы, что по латыни означает “первые”: в давние времена ученые именно приматов, за их близость к человеку, ставили первыми в Системе Природы. У настоящих приматов, как и у…

Австралийский палеонтолог Майкл Ли предложил новую гипотезу происхождения черепах. Как и многие авторы до него, Ли считает, что черепахи близки к крупным растительноядным ящерам пермской эпохи - парейазаврам ; но он предполагает, что черепахи вместе с парейазаврами произошли от диапсид - ветви рептилий, к которой относятся крокодилы, динозавры и ящерицы. Если эта гипотеза подтвердится, она будет означать очень сильную перестройку эволюционного древа рептилий, возможно, даже заслуживающую названия «новой филогении рептилий».

Черепахи появились на Земле примерно 220 миллионов лет назад, в конце триасового периода . Поздний триас - особая эпоха в истории наземных позвоночных. Именно тогда возникли млекопитающие, черепахи, крокодилы, динозавры и птерозавры (летающие ящеры) - пять групп животных, которые очень сильно изменили облик нашей планеты. Из всех этих групп именно происхождение черепах выглядит наиболее загадочным. И главная причина тут не недостаток усердия палеонтологов, а слишком необычная анатомия черепах, затрудняющая их сравнение с любыми другими позвоночными.

Какие вообще возможны «кандидаты» на роль предков черепах? Известно, что рептилии и их потомки делятся на три огромные группы: анапсиды , диапсиды и синапсиды . Главный признак, по которому эти группы выделены, это число височных дуг - костных мостиков в крыше черепа, разделенных отверстиями. У нас, например, височная дуга только одна (ее можно нащупать, проведя рукой назад от скулы), и это означает, что мы - синапсиды («слитнодужные»). К синапсидам относятся млекопитающие и вымершие зверообразные рептилии. Диапсидами («двудужными») называются животные, у которых височных дуг изначально было две; к ним относятся ящерицы, змеи, гаттерии, крокодилы, динозавры, птерозавры, а также птицы. И наконец, анапсиды («бездужные») - это те, у кого никаких височных дуг и отверстий нет вовсе. К ним относится несколько вымерших групп ящеров, например парейазавры и проколофоны .

К синапсидам черепах не относит никто. А вот отнести их к анапсидам было совершенно естественно, потому что никаких височных дуг и отверстий у черепах нет; у них встречается разве что височная вырезка (но не отверстие!). Действительно, еще в начале XX века сразу несколько палеонтологов пришли к выводу, что черепахи - это единственные дожившие до наших дней анапсиды. Их предками вполне могли бы быть, например, парейазавры, которые немного похожи на черепах даже формой тела (рис. 1).

В 1947 году американский палеонтолог Эверетт Олсон (Everett Olson) предложил выделить анапсид в подкласс парарептилий (Parareptilia), подчеркивая их отдельное от других рептилий происхождение. В этот подкласс он включил и черепах.

Но ведь есть еще диапсиды. По Олсону, они вошли в подкласс настоящих рептилий (Eureptilia). Проблема в том, что и с современными диапсидами черепахи тоже имеют ряд общих черт. Например, сердце у черепах и у ящериц устроено настолько похоже, что это еще в 1916 году привело крупного английского сравнительного анатома Эдвина Гудрича (Edwin Stephen Goodrich) к мысли об их близком родстве. В дальнейшем признаки, общие у черепах с диапсидами, были обнаружены в анатомии тазового пояса, стопы, верхней челюсти, позвоночника, затылка. А височные окна, в конце концов, могли в каких-то эволюционных линиях возникнуть повторно или, наоборот, зарасти. В результате к концу XX века гипотеза происхождения черепах от диапсид стала довольно популярной (см.: В. Р. Алифанов. Загадка происхождения черепах , «Природа», 2001, №8).

Выбор между двумя главными теориями происхождения черепах - анапсидной (парарептилийной) и диапсидной (эурептилийной) - не сделан до сих пор. Достаточно сильные сравнительно-анатомические доводы можно найти и за ту, и за другую. К счастью, есть еще и молекулярная филогенетика . Анализ последовательностей ДНК, охватывающий больше двух сотен генов, приводит к выводу, что ветвь черепах находится внутри диапсид (рис. 2).

Если верить, что последнее слово - всегда за молекулярной биологией, задачу можно на этом считать решенной. Но откуда же всё-таки столько противоречий в морфологических построениях? И как эти противоречия убрать?

Разобраться в этом, объединив по возможности все современные данные, решил австралийский палеонтолог Майкл Ли (Michael Lee). Он рассудил так: если решение задачи раз за разом не сходится - значит, нужно исследовать сам метод, которым мы ее решаем.

В наше время единственным общепринятым методом построения эволюционных деревьев является кладистический анализ (см. кладистика). В рамках этого метода вся эволюция рассматривается как набор дихотомических (надвое) ветвлений родословного древа, и задача сводится всего лишь к установлению порядка этих ветвлений. А он определяется по строгим алгоритмам, исходя из списков признаков, на которые обязательно разбиваются фенотипы животных. Во всех спорных случаях истинной считается та ветвь, у которой больше уникальных общих признаков.

Расчеты деревьев в кладистике уже давно выполняются автоматически, с помощью специальных программ. От этих программ зависит очень многое; ученые-филогенетики постоянно занимаются их усовершенствованием, комбинируя существующие подходы и предлагая новые.

Но даже из такого предельно краткого описания ясно, что в кладистическом анализе есть как минимум одна совершенно неизбежная операция, которая может быть выполнена только человеком. Это - составление списка признаков. Вид древа, которое выдает программа, всегда зависит от того, значения каких признаков в нее ввели.

А от чего зависит выбор признаков? В первую очередь - от того, какая группа животных находится в центре внимания данного исследователя. У ученых, специализирующихся на парарептилиях (анапсидах) и на настоящих рептилиях (диапсидах), при решении одной и той же проблемы - в данном случае проблемы происхождения черепах - получаются разные результаты в значительной степени потому, что они просто работают с разными признаками. Например, специалисты по анапсидам традиционно уделяют несколько больше внимания анатомии черепа, а специалисты по диапсидам - наоборот, анатомии конечностей и осевого скелета.

Черепах можно включить в древо, построенное изначально для парарептилий, а можно включить в древо, построенное изначально для диапсид. Результаты, конечно, в идеале должны быть одинаковыми, но на самом деле они будут разными. Майкл Ли решил специально проверить это. Сначала он с помощью соответствующих программ построил два типа родословных деревьев рептилий без черепах : «сфокусированное на диапсидах» (diapsid-focused) и «сфокусированное на анапсидах» (anapsid-focused), потом включил черепах в каждое из этих деревьев, а потом сопоставил результаты (рис. 3).

По-русски деревья первого типа удобно назвать «диапсидоцентрическими», второго - «анапсидоцентрическими»; громоздкие слова, но тут проще не скажешь. И тех, и других было построено по восемь штук, с применением разных вычислительных методик. При этом из восьми «диапсидоцентрических» деревьев на шести черепахи оказались внутри диапсид, и на двух - всё-таки внутри анапсид. А вот на «анапсидоцентрических» деревьях черепахи оказались внутри анапсид во всех случаях. Предпочтения в пользу диапсид там ни в одном варианте не выходит.

Итак, между «диапсидоцентрическими» и «анапсидоцентрическими» деревьями есть асимметрия. «Анапсидоцентрические» поддерживаются кладистическим анализом существенно надежнее. Просто группа животных попалась такая сложная, что без специального исследования это не видно.

Значит, черепахи - всё-таки анапсиды?

Но как же тогда быть с молекулярными данными, которые довольно однозначно помещают черепах среди диапсид?

Ли находит очень экстравагантный выход из этого противоречия. Он высказывает идею, что утверждения о происхождении черепах от диапсид и о близости их к парейазаврам и проколофонам (то есть к заведомым анапсидам) могут быть верны одновременно . Это означает, что парейазавры, проколофоны, а может быть, и другие парарептилии - тоже диапсиды, только потерявшие височные окна очень рано и быстро.

Имеет ли право на жизнь такая гипотеза, без преувеличения переворачивающая традиционное представление о родословном древе рептилий? Ли ссылается на недавние находки парарептилий, близких к проколофонам, у которых по крайней мере одно височное окно действительно обнаружено (см.: Modesto et al., 2009. A new parareptile with temporal fenestration from the Middle Permian of South Africa). Более того, совсем недавно была опубликована эволюционная реконструкция, согласно которой наличие хотя бы одного височного окна является примитивным состоянием для всех рептилий вообще (см.: Pineiro et al., 2012. Cranial morphology of the Early Permian mesosaurid Mesosaurus tenuidens and the evolution of the lower temporal fenestration reassessed). На таком фоне гипотеза Ли, фактически ликвидирующая группу анапсид, не выглядит совсем уж невероятной. И противоречие, касающееся положения черепах, она действительно снимает.

Майкл Ли известен как давний сторонник гипотезы происхождения черепах от парейазавров (см., например: Lee, 1997. Pareiasaur phylogeny and the origin of turtles). Новая радикальная версия этой гипотезы определенно служит ему «последним рубежом обороны». Так что его позицию вряд ли можно считать абсолютно объективной (а, впрочем, кто из ученых полностью объективен?). Но обоснование новой гипотезы Ли выглядит вполне разумно. Эта гипотеза, безусловно, требует проверки, но внимания она заслуживает - уже потому, что предлагает взглянуть на эволюцию давно и хорошо изученной группы животных с неожиданной стороны.

Если же Ли окажется прав, то и учебники зоологии в части, касающейся эволюции рептилий, придется переписать. Можно даже сказать, что здесь вырисовывается своего рода «новая филогения рептилий», по аналогии с уже широко известной «новой филогенией животных» (см.: Новые данные позволили уточнить родословную животного царства , «Элементы», 10.04.2008). Причем в данном случае молекулярная биология будет при проверке новой идеи почти бесполезна: все переходные группы вымерли настолько давно, что по ним невозможны никакие молекулярно-генетические исследования. Так что дело - за палеонтологами.

Царство животных подразделяют на два подцарства: одноклеточные и многоклеточные.

Одноклеточные организмы (эукариоты) произошли от гетеротрофных прокариотов. В современной фауне к ним относят корненожек, жгутиковых, споровиков, инфузорий.

Дальнейшее развитие происходит от примитивных турбеллярий с образованием кольчатых червей (малощетинковые, пиявки, многощетинковые). Примитивные многощетинковые черви определяют возникновение четырех ветвей в древе животных.

Первая ветвь – моллюски (брюхоногие, двустворчатые, головоногие).

Вторая ветвь – членистоногие (ракообразные, паукообразные, насекомые).

Третья ветвь – иглокожие (морские звезды, морские ежи и голотурии, или морские огурцы).

Четвертая ветвь – хордовые, которые возникают вначале палеозоя, когда все типы беспозвоночных животных (рассмотренных выше) уже существовали. Произошли хордовые животные от общего с иглокожими вторичноротого двустороннесимметричного свободноплавающего предка.

Тип хордовых объединяет 3 крупные группы животных: подтипы бесчерепных, личиночнохордовых и черепных, или позвоночных. Подтип бесчерепные состоит из одного класса животных – головохордовых, всего их 30 видов, например, ланцетник. Подтип личиночнохордовые (или оболочники) произошли от примитивынх свободноплавающих бесчерепных, которые перешли к сидячему образу жизни. Оболочники все являются морскими организмами, среди наиболее известных – асцидии.

Высшим подтипом хордовых являются позвоночные. Среди позвоночных выделяют круглоротых (бесчелюстных) – это миноги, миксины. От примитивных круглоротых произошли рыбы, которые делятся на хрящевые, костные, кистеперые, двоякодышащие. Кистеперые рыбы дали начало земноводным, или амфибиям. Амфибии включают в себя хвостатых, бесхвостых, безногих. Например, протеи, тритоны, саламандры и сирены; жабы и лягушки; рыбозмеи и червяги. От амфибий произошли рептилии, или пресмыкающие. В современной фауне присутствуют отряды чешуйчатых (змеи, ящерицы, двуходки, хамелеоны), крокодилов, черепах и клювоголовых (гаттерии).

От неспециализированных, лазающих пресмыкающих произошли птицы. Современные птицы включают группы килевых, или летающих; плавающих, или пингвины; бескилевых, или бегающие (страусы, киви, казуары).

Предками млекопитающих являются неспециализированные палеозойские рептилии с чертами строения земноводных, или зверозубые рептилии. Первые млекопитающие дивергировали на две ветви. Первая ветвь – это первозвери (однопроходные), например, ехидна, утконос. Вторая ветвь – это сумчатые (коала, кенгуру, опоссумы), а также плацентарные (землеройки, летучие мыши, грызуны, хищные, ластоногие, парнокопытные, непарнокопытные, слоны, приматы, человек). Линия человека начинает развиваться от предковых форм насекомоядных полуобезьян.

Многие выводы современной теории эволюции неочевидны и требуют изощренных обоснований. В ней немало нерешенных проблем, и есть области, к изучению которых только приступили. Однако на сегодняшний день это единственная фундаментальная теория в биологии, позволяющая объяснить развитие и разнообразие жизни.

Понятие «эволюция», то есть «развертывание» или «разматывание», постепенное без скачков и перерывов изменение и усложнение какого-нибудь объекта, существовало в науке и до Дарвина . Об эволюции, например, Солнечной системы писали Кант в 1755 году и Лаплас в 1796-м. Естественно, что и биологи примеряли эту идею к своей дисциплине. Первая основанная на ней теория органического мира принадлежала Жану Батисту Ламарку, который предположил, что всем живым существам свойственно стремление к самоусовершенствованию и прогрессу с наследованием приобретенных на протяжении жизни признаков. И хотя с точки зрения современной науки в объяснении причин развития Ламарк был не прав и изменения, которые не затрагивают половые клетки, наследоваться не могут, тем не менее существование самого явления эволюции он доказал вполне убедительно. Были, конечно, и другие теории развития органического мира, ныне практически забытые. Для XVIII и начала XIX века подобный подход, объяснявший происходящие в мире изменения естественными причинами, а не действием высших сил, был новаторским и противоречил общепринятой методологии, суть которой лучше всего изложил англиканский священник Уильям Пэйли. В увидевшем свет в 1806 году «Естественном богословии» он рассуждал так: предположим, что на прогулке в поле мы нашли часы. Ясно, что столь сложный и целесообразный механизм не мог возникнуть самопроизвольно, но был замыслен и изготовлен неким часовщиком. Но Вселенная и жизнь неизмеримо сложнее часов, поэтому должен быть и создавший их Мастер. Популярность этой аналогии в наши дни побудила американского биолога и выдающегося популяризатора дарвинизма Ричарда Докинза продолжить спор с Пэйли и даже дать своей книге, опубликованной в 1986 году, название «Слепой Часовщик». Как объяснить ошибки и неточности в «конструкции» живых организмов, спрашивает Докинз. К примеру, геном человека «содержит огромное количество «мусора», неработающих и даже смертельных генов, как, например, онкогены. Все это мог создать только слепой часовщик, но никак уж не «умный» творец».

К тому времени, как Чарлз Дарвин отправился в знаменитое кругосветное плавание на корабле «Бигль», и за почти двадцатилетний последующий период, когда он прорабатывал свою теорию, в естествознании, в первую очередь в геологии, было накоплено достаточно фактов, позволяющих объяснять развитие физического и органического мира без Часовщика.

Англия и континентальная Европа изобилуют местами, где пласты горных пород выходят прямо на поверхность и потому легкодоступны для изучения. В начале 1830-х годов английский геолог Чарлз Лайель, с которым Дарвин впоследствии сдружился, предложил новую концепцию истории Земли, названную униформизмом. Согласно ей главные процессы, изменяющие Землю, — это выветривание и размывание горных пород. Поскольку идут они очень медленно, то увидеть результаты их работы - сглаживание гор и образование километровых осадочных толщ - можно только за длительный период времени. Первые же оценки возраста Земли по скорости накопления морских осадков составили миллионы лет вместо шести дней Творения. Тогда считали, что для постепенной эволюции видов этого времени вполне достаточно.

Книгу Лайеля «Основы геологии» с изложением идеи постепенной эволюции ландшафтов Дарвин даже брал с собой в путешествие, хотя отношение к ней научного сообщества было настороженным. Большинство ученых верили в теорию катастроф, утверждавшую, что каждый пласт ископаемой фауны - это свидетельство отдельных актов творения, которые чередовались с катастрофическим вымиранием созданного прежде. «Проницательный Генсло (пастор и ботаник) дал совет мне внимательно изучить только что появившийся первый том Principles, но ни в коем случае не проникаться проводимыми в ней воззрениями», - писал Дарвин. Но молодой естествоиспытатель проникся - так убедительны были доводы Лайеля.

На постепенные изменения, происходящие в органическом мире, указывал и огромный палеонтологический материал, накопленный в XIX веке. Разнообразие окаменелых форм животных и растений, четкое распределение их по толщам, вплоть до того, что по одним и тем же ископаемым остаткам можно установить одновозрастные слои, даже если они находятся в разных местах, - все это наводило на мысль о том, что живой мир закономерно менялся по всей планете. Более того, уже во времена Дарвина по окаменелостям начали восстанавливать временную последовательность геологических событий, которой ученые пользуются поныне.

Поскольку эволюционное развитие предполагает непрерывность, значит, одни виды должны происходить от других. Главное подтверждение этого тезиса пришло из эмбриологии, которая бурно развивалась в начале XIX столетия, и уже был открыт закон (российским академиком Карлом фон Бэром), согласно которому у животных, совершенно разных во взрослом состоянии, похожи зародыши. Дарвин был хорошо знаком с этими исследованиями и использовал их для своих теоретических построений.

Рождение дарвинизма

Что же, собственно, сделал сам Дарвин? А сделал он на первый взгляд очень простую, но совершенно необходимую вещь, благодаря которой гипотеза стала теорией. Он объяснил, как идет эволюция, каков ее конкретный механизм. Именно это объяснение, оформленное в виде теории естественного отбора, впоследствии назвали «дарвинизмом». Эта теория «покоится на трех китах»: изменчивости, наследственности и отборе. Понять ее несложно и школьнику, достаточно припомнить, что среди животных и растений, будь то домашние или дикие, всегда есть какое-то разнообразие, и особи одного вида хоть немного, но отличаются друг от друга - так проявляется изменчивость. При этом дети больше похожи на своих родителей, чем на чужих, - так работает наследственность. Теперь положим, что в потомстве одной пары голубей клювы немного различаются по длине, и один любитель обращает внимание на голубя с клювом слегка покороче, другой же, напротив, на голубя с клювом подлиннее, поэтому они будут отбирать для разведения птиц с одним из крайних проявлений признака. Первоначально отличия очень малы, но с течением времени отбор приводит к возникновению двух хорошо различающихся форм - пород. Именно так в действительности и произошло с породами голубей-турманов, выведенных в Англии, чей пример использовал для иллюстрации своей теории Дарвин. Получается, что совершенство и поразительное разнообразие живых организмов - от бактерий и грибов до баобабов и человека - создано благодаря естественному отбору, который действует из поколения в поколение.

Первое издание основного труда Дарвина «Происхождение видов путем естественного отбора» увидело свет 24 ноября 1859 года. В день ее появления на прилавке магазина она разошлась тиражом 1 250 экземпляров. Потребовалось второе издание тиражом 3 тысячи, потом допечатали еще 16 тысяч, книгу перевели на многие языки мира. Дарвин смеялся: «Даже на древнееврейском языке появился очерк о ней, доказывающий, что моя теория содержится в Ветхом Завете!» Он был горд и отрицал, будто успех книги - только в ее своевременности. По его признанию, до ее публикации он не встречал среди своих коллег ни одного, кто сомневался бы в постоянстве видов. Даже Лайель не соглашался с Дарвином. Однако теория естественного отбора так хорошо объясняла накопившийся у натуралистов материал и так интересно читалась, что была просто обречена на успех.

Что бы ни говорил автор, книга действительно оказалась очень своевременной. Благодаря быстрому развитию науки, техники и экономики в европейском обществе распространилась идея прогресса. Теория эволюции переносила ее на развитие живого мира и одновременно служила естественнонаучным обоснованием прогрессистских социальных теорий. Говорят даже, что Карл Маркс хотел посвятить «Капитал» Дарвину, и хотя это лишь миф, его существование показательно.

Коль скоро дарвинизм признавал эволюцию всех видов, то с неизбежностью возникал вопрос о происхождении «венца творения». На него Дарвин тоже ответил, но в другой книге, которая вышла на 12 лет позже первой: вероятно, он долго не решался публично выступить по такому щекотливому вопросу. Эта книга называлась: «Происхождение человека и половой отбор». По мнению автора, своим интеллектуальным прогрессом человечество обязано женщинам, которые выбирали себе самых умных и надежных партнеров, а слабые и глупые представители сильной половины оставались без потомства. Именно в этой книге прозвучало впервые заявление, столь взбудоражившее общество, о нашем родстве с обезьянами. С тех пор теория эволюции вышла за стены кабинетов ученых, стала предметом широкого обсуждения, и критика ее утратила конструктивный научный характер. Что поделать, но тогда в руках у Дарвина не было столь весомых доказательств своей правоты, которые появились позже, и, говорят, под занавес своей жизни он готов был даже отказаться от гипотезы происхождения человека. Факты появились вскоре после его кончины. В 1890 году на острове Ява голландский антрополог Эжен Дюбуа обнаружил кости древних, похожих на человека, существ, которых назвали питекантропами. И хотя, по современным представлениям, ни питекантроп, ни другие известные ископаемые человекообразные, включая неандертальца, не были непосредственными предками человека, тем не менее они - наши ближайшие генетические родственники - и помогают увидеть, как вместе с постепенным развитием мозга и освоением прямохождения возник человек.

Зачем судиться с теорией

После Первой мировой войны общественное мнение в США было предубеждено против теории эволюции, которую связывали с атеизмом. В 1925 году в штате Теннесси в качестве закона был принят «акт Батлера», гласящий: «…будет нарушением закона, если любой преподаватель любого университета или школы, содержащихся полностью или частично за счет штата, будет преподавать любую теорию, отрицающую историю Божественного Творения человека, как тому учит Библия, и вместо этого преподавать, что человек произошел от низших животных». Ответственность за нарушение предполагала уплату штрафа в 100-500 долларов, большой по тем временам суммы. Противники акта Батлера, группа бизнесменов из Дейтона, маленького городка в штате Огайо, возглавляемых инженером Джорджем Рэппли, решили показать абсурдность этого закона весьма оригинальным способом - через суд. Они заручились согласием молодого преподавателя естествознания и математики Джона Скоупса, что тот признает себя нарушителем акта Батлера. Фактически Скоупс только один раз вел урок биологии, заменяя заболевшего коллегу, на котором действительно обсуждал главу по дарвинизму из рекомендованного учебника. Замысел заключался в том, чтобы процесс показал несостоятельность акта Батлера и привел к его отмене. Дополнительным стимулом была идея Рэппли о том, что процесс привлечет внимание к Дейтону и поможет заработать - классическая пиар-акция.

Процесс начался 10 июля 1925 года. Защита добилась обсуждения Библии в качестве альтернативного естествознанию источника знаний. Обвинитель Уильям Брайан, влиятельный политик, неоднократный кандидат в президенты, вынужден был отвечать на «неудобные» вопросы о библейских чудесах, можно ли их трактовать буквально и рассматривать в качестве серьезной альтернативы естественнонаучной точке зрения: о сотворении мира за шесть дней и его возрасте, остановке Солнца Иисусом Навином, проглоченном китом и жившим три дня в его желудке Ионе и подобном. Брайан не ответил на эти вопросы удовлетворительно, и наблюдавшая за процессом пресса признала его поражение. Стало очевидно, что библейские факты естественной истории можно трактовать как аллегории. Скоупс был оправдан, но в силу юридических причин акт Батлера отменили не сразу - это произошло только в 1967 году, хотя со времен «обезьяньего процесса» более ни разу не применяли.

В США было еще несколько попыток ограничить преподавание эволюционизма в школе по религиозным мотивам. Последний раз это было в 2002 году в округе Кобб штата Джорджия, где на школьных учебниках биологии по требованию верующих родителей поместили наклейки с надписью: «…эволюция - это теория, а не факт… эту тему надо рассматривать критически». В 2005 году окружной суд постановил эти наклейки убрать. В России недавно прошел первый «обезьяний процесс». Инициировавший его Кирилл Шрайбер профессионально занимается рекламным бизнесом, равно как помогавший ему на процессе друг Антон Вуйма, руководитель «Духовного наследия» - организации, называющей себя «информационным агентством с сильным PR-уклоном». Сам Вуйма в интервью признавал, что в целях саморекламы проводит акцию «черного PR» - в данном случае против дарвинизма. Суд города Санкт-Петербурга принял первый иск к рассмотрению и вынес по нему отрицательное решение.

Лучшая демонстрация теории эволюции - стадии развития лягушки: у похожего на рыбку головастика сначала отрастают задние лапки, потом передние, затем исчезает хвостик, и вот новое существо - амфибия

Общий предок

Коллеги задавали Дарвину массу вопросов, на многие из которых он убедительно ответил и не только потому, что был энциклопедически образованным человеком, но и благодаря силе предложенной им теории. А на что не ответил он сам, ответили следующие поколения ученых, и их ответы породили новые вопросы…

Возможно ли, что никакой преемственности между видами нет и каждый из них возник независимо? На этот вопрос современная наука, которая изучает механизм эволюции на уровне молекул, отвечает отрицательно. У всех известных существ наследственная информация закодирована в виде последовательности нуклеотидов в молекулах ДНК. Нуклеотидов всего четыре, и они одинаковы у микроорганизмов, растений и животных. Этот факт - в пользу родства всех существ. Но порядок следования нуклеотидов различается в молекулах ДНК разных организмов, что, собственно, и служит залогом их внешнего и внутреннего различия. Чем больше таких различий в ДНК двух разных видов, тем раньше они разошлись со своим общим предком.

Используя эти положения, в 1962 году американские биохимики Лайнус Полинг и Эмиль Цукеркандль выдвинули идею «молекулярных часов». Они заметили корреляцию между количеством различий в последовательностях аминокислот гемоглобина - белка, переносящего кислород, который есть у многих животных, и временем расхождения видов согласно палеонтологической летописи. То есть скорость, с которой изменяется последовательность аминокислот, для данного белка постоянна. А значит, по числу различий в одном и том же белке для любой пары видов можно оценить время их расхождения, даже если и палеонтология на этот счет не дает никаких указаний. Как в школьной задаче на расчет времени при известных расстоянии и скорости. Тот же принцип оказался верным и для последовательностей нуклеотидов в молекулах ДНК. В идеальном случае генеалогия живого существа, построенная палеонтологами, должна совпасть с генеалогией, построенной генетиками, и это стало бы одной из лучших демонстраций теории эволюции.

Знания о последовательностях ДНК и белков привели к рождению новой науки, занимающейся их сопоставлением и анализом, - биоинформатики. От нее ответвилась молекулярная филогенетика. По сравнению с традиционной систематикой, основанной на изучении анатомии, эта наука оперирует огромным количеством признаков - ведь число генов у многоклеточных организмов исчисляется многими тысячами, и каждый из них состоит из сотен или тысяч нуклеотидов. Сотни лабораторий во всем мире анализируют ДНК и все глубже разбираются в родственных связях организмов.

Не только генетический код, но и функциональные участки ДНК - гены - нередко одинаковы. Например, развитие зародыша у разных групп многоклеточных животных управляется одними и теми же генами. Где будет передний конец, а где - задний, задают «гомеозисные» гены, очень похожие у всех животных: от медузы до примата. Одни и те же гены управляют развитием глаза мухи и мыши - а ведь прежде считалось, что эти органы несравнимы, поскольку по-разному устроены: глаз насекомых состоит из множества простых глазков - фасеток, каждый из которых дает изображение одной точки пространства, а глаз позвоночных строит полное детальное изображение. Еще пример, в зародыше любого вида образуются лишние клетки, которые затем самоуничтожаются. Так, наши пальцы формируются за счет гибели клеток между ними, иначе вместо нормальной конечности развивалась бы сросшаяся культя. Точно так же ликвидируются самостоятельно и мутантные клетки, способные стать раковыми. Эти процессы запрограммированной гибели клеток - апоптоза - управляются особыми генами, которые очень похожи и, как оказалось, взаимозаменяемы, у человека, мыши и крошечного червя, состоящего всего лишь из одной тысячи клеток.

А раз во всех существах встречаются одинаковые «кирпичики», значит, они достались им от некоего общего предка? Кто же это мог быть? В мире одноклеточных мы видим организмы, похожие по обмену веществ и на растения, и на животных. Первые путем фотосинтеза создают себе пищу сами, вторые - этого не могут и нуждаются в готовых органических веществах. Например, от такого существа, как эвглена зеленая - полуводоросль-полуживотное, могла пойти дальнейшая эволюция. Чтобы стать многоклеточными, отдельным существам-клеткам нужно было объединиться в колонии. Сейчас полагают, что такой скачок связан с появлением хищничества как образа жизни: большую особь труднее съесть. Вся дальнейшая эволюция - это непрекращающаяся гонка наращивания размеров обеих противоборствующих сторон, в которой хищники и жертвы подгоняли друг друга. Животные, которые жили миллиард лет назад, настолько отличались от современных, что к ним неприменимы привычные принципы классификации. В них причудливо сочетались признаки разных современных типов, никогда не встречающиеся одновременно ни в одном из ныне живущих организмов. Трибрахидиум можно было бы назвать медузой, если бы не диковинная трехлучевая симметрия, более характерная для растений. Дикинсония похожа на кольчатого червя, но назвать ее так мешает «скользящая» симметрия, при которой парные конечности расположены не напротив друг друга, а в шахматном порядке. Такой тип симметрии опять-таки чаще встречается в растительном царстве, но в данном случае ученые уверены, что имеют дело с животным. По непонятной причине эти странные существа вымерли, и более полумиллиарда лет назад (в раннем кембрии) на коротком отрезке времени длительностью порядка десяти миллионов лет появились все известные современные типы животных. Это событие назвали «кембрийским взрывом». И согласно теории эволюции общий предок современных животных вышел из древнего мира докембрийских «чудищ», тех, кто пережил глобальную катастрофу. Данные молекулярной филогенетики подтверждают, что родословная современных типов (как то: губки, погонофоры, хордовые и т. д.) - это не дерево, но куст с пучком ветвей-типов, растущих из единого корня. А вот окаменелые остатки того, кто был этим корнем, палеонтологам еще не попались.

Уязвимое место

На самом деле прямого обоснования эволюционной теории еще никто не представил. В качестве такового может послужить только наблюдение за естественным развитием видов и обязательная регистрация того, какими были существа на старте, их промежуточные формы и во что превратились в конце. Отсутствие такого наблюдения и есть наиболее уязвимое место теории. Действительно, если видообразование - это непрерывный процесс, который продолжается и в наши дни, то почему мы не встречаем переходных форм? Есть, к примеру, тигр, лев, леопард, рысь - представители семейства кошачьих, а полосатых львов или тигров с гривами - форм промежуточных между двумя родственными видами - не бывает. Настораживает и то, что в ископаемом состоянии переходные формы также не встречаются. Отсутствие современных переходных форм Дарвин объяснял тем, что картина сегодняшнего мира - это результат уже разрешившихся противоречий и родоначальные виды истреблены естественным отбором. Что же до отсутствия их ископаемых остатков, то аргументом служили кратковременность их существования и небольшая численность, из-за чего вероятность, чтобы они сохранились, очень мала, а вероятность обнаружить их - и вовсе мизерна. Все, что видят палеонтологи, - это один вид в одном слое, другой - в другом, и никаких переходов. Словно долгие периоды устойчивого существования одних и тех же организмов вдруг сменялись быстрым видообразованием. Американские ученые Нильс Элдридж и Стивен Гоулд назвали это явление «прерывистым равновесием». Осталось понять условия стабильности и факторы ускорения эволюции.

И все-таки, в одном частном случае - среди микроорганизмов - ученые считают, что им удается видеть и регистрировать ход эволюции. В ответ на изобретение новых антибиотиков против болезнетворных бактерий возникают штаммы (группы микроорганизмов с четкими физиологическими особенностями), устойчивые к действию этих лекарств. С первой половины XX века идет постоянная гонка: медикам приходится все время изобретать новые лекарственные средства, которые быстро теряют эффективность из-за ускоренной эволюции микробов. Единственное, что останавливает от того, чтобы считать ее зримым процессом видообразования, - невозможность применить к бактериальному штамму понятия «вид». Стандартное определение гласит, что вид - это совокупность организмов, неспособных к скрещиванию с особями других видов или дающих при таких скрещиваниях бесплодное потомство. Но оказалось, что штаммы, относящиеся к одному и даже разным видам бактерий, могут обмениваться генетическим материалом друг с другом. Это явление назвали горизонтальным переносом генов. Благодаря миграции генов достижения одного вида микроорганизмов становятся доступными для другого - такую форму эволюции назвали ретикулярной, или сетчатой, чтобы подчеркнуть ее отличие от «классической», то есть древовидной, куда бактерии, похоже, не вписываются. Образно говоря, для бактерий нельзя построить эволюционное древо с общим корнем - у них родственные связи образуют запутанную сеть.

Парадоксы развития

Еще один феномен, который пока трудно объяснить с эволюционной точки зрения, - это сложность строения живого организма. Как, например, мог образоваться такой совершенный орган, как глаз? Дарвин, который хорошо знал зоологию и анатомию, на этот вопрос отвечал так. Органы, способные воспринимать свет, есть даже у самых простейших существ. Поэтому глаза можно выстроить в ряд по мере усложнения: от простых пигментных пятен или выстланных пигментом прозрачных кожных мешочков ланцетника до сложных фасеточных глаз насекомых и совершенной оптической системы человеческого глаза. Причем такой ряд легко создать и на основе глаз зародышей, что будет иллюстрацией к процессу их развития. Ну а какие преимущества в конкурентной межвидовой борьбе дают хорошо работающие глаза тем, у кого они есть, вряд ли нужно перечислять. Гораздо труднее оказалось для Дарвина объяснить происхождение электрических органов у рыб. Но если бы ему было известно, что почти все физиологические процессы имеют электрическую природу, он с легкостью это сделал бы.

Тем не менее проблема осталась - на молекулярном уровне. Даже у наиболее простых бактерий есть около 200 генов, каждый из которых состоит из сотен или тысяч нуклеотидов. Каждый ген отвечает за какую-то жизненно необходимую функцию, например за построение элементов клетки, производство и починку молекул ДНК, за транспорт пищи в клетку. Американский биохимик Майкл Бихи назвал это свойство живой системы «неуменьшаемой сложностью», из которого следует, что первая клетка должна была появиться сразу с двумя сотнями генов, чтобы стать жизнеспособной. Кстати, этот пример часто используют критики теории эволюции. Они говорят: раз биологи сами пришли к такому парадоксу, значит, они отрицают дарвинизм. В логике такой прием называется подменой тезиса и свидетельствует об ошибочном выводе - разумеется, ученые не отрицают дарвинизма, они ищут пути обхода «неуменьшаемой сложности». Действительно, случайное возникновение даже самой элементарной клетки путем перебора химических соединений маловероятно. Но мы мало знаем о том, как была организована ранняя жизнь на Земле и какие пути могли привести к возникновению клетки.

Проблему представляет собой и сложность многоклеточных организмов с десятками тысяч генов. Ведь материала, с которым «работает» естественный отбор, может не хватить. Особенно среди крупных животных, исчисляемых всего лишь тысячами особей, таких как киты или слоны. В 1957 году английский генетик Джон Холдейн рассчитал, что для замены в популяции каких-либо организмов только одного признака необходимо вести отбор в 300 поколениях - а признаков-то (генов) десятки тысяч! Возможно ли при такой маленькой скорости эволюции возникновение новых видов, различающихся не по одному, а по целому комплексу признаков? Позднее это затруднение назвали «дилеммой Холдейна». Кажущуюся невозможность удается преодолеть, если сменить математическую модель и отказаться от посылки, что признаки эволюционируют независимо друг от друга. Половой процесс и связанный с ним обмен генами может объединять в одной особи множество нежелательных признаков и позволяет выбраковывать их существенно быстрее, чем предполагалось в модели Холдейна.

С помощью генетики удалось решить и вопрос о направленном течении эволюции, который стоял в свое время довольно остро. Еще в XIX веке палеонтолог Эдуард Коуп обнаружил, что у разных видов ископаемых животных могли развиваться одинаковые признаки. Это указывало на то, что эволюция - процесс не случайный, но подчиняющийся каким-то внутренним, еще не открытым закономерностям. В XX веке схожую концепцию под названием «номогенез» развивал русский ученый Лев Берг. Но экспериментальные данные такой концепции противоречат. У животных, даже не близких родственно, есть много общих генов, они-то и определяют, казалось бы, независимое появление у разных видов сходных признаков. Поскольку гены похожи, то и изменяются (мутируют) они сходным образом. С этой точки зрения удалось объяснить «закон гомологических рядов в наследственной изменчивости», сформулированный в 1920 году Николаем Вавиловым, который обнаружил, что у разных видов злаков встречаются похожие формы. Например, у ржи и пшеницы колосья могут быть как с остью, так и без нее; междоузлия могут быть как окрашенными, так и нет. Этот закон обладает большой предсказательной силой: если у одного растения какого-то признака нет, но он есть у близкого ему вида - нужно искать, вполне вероятно, что его просто еще не обнаружили.

Кто мы?

Генетика генетикой, но давайте посмотрим правде в глаза. Во всей этой истории большинство людей по-настоящему волнует лишь один вопрос - происхождение человека. Прав ли был Дарвин относительно близкого родства людей с человекообразными обезьянами? Судите сами. Анатомическое строение, физиологические и биохимические особенности, в частности строение молекулы гемоглобина, роднят нас с человекообразными обезьянами настолько, что сомневаться трудно. Ближе всех к человеку стоит шимпанзе, наше генетическое сходство настолько велико - 98%, что возникла идея в один род объединить человека и два известных вида шимпанзе: обыкновенного (Pan troglodytes) и карликового (Pan paniscus), также известного под названием бонобо. В 1991 году американский биолог Джаред Даймонд написал книгу об эволюции человека, которую так и назвал: «Третий шимпанзе». По его мнению, в зоологической систематике рода Homo правильнее использовать три вида: Homo troglodytes (человек пещерный, или шимпанзе обыкновенный), Homo paniscus (человек фавновый, или шимпанзе карликовый) и Homo sapiens.

По данным молекулярной филогенетики, эволюционные линии человека и шимпанзе разошлись примерно 6-7 миллионов лет назад. Мало того, сопоставив 14 000 генов человека и шимпанзе, ученые из Мичиганского университета под руководством Цзяньчжи Чжана пришли к выводу, что у шимпанзе эволюция на молекулярном уровне шла быстрее. То есть для того чтобы из предка, общего для шимпанзе и человека, получились сегодняшние виды, больше генов потребовалось изменить у шимпанзе. Так, может быть, вершина эволюции - это шимпанзе, а не человек? Тем более что с точки зрения биологии способность к рассудочной деятельности, выраженная у человека в большей мере, чем у других видов животных, не такое уж принципиальное отличие, и оно требует меньшего количества генетических перестроек, чем геном в целом.

Фальшивки и ошибки

За полтора столетия эволюционной теории в ней бывали ошибочные опыты и заключения, а подчас и фальсификации, и это - повод для вполне справедливой критики. Например, знаменитая история с «пилтдаунским человеком», обнаруженным в 1912 году. Его скелет был сфабрикован какими-то шутниками из черепа человека и челюсти орангутана и долгое время рассматривался как промежуточное эволюционное звено к современному человеку. Фальшивку разоблачили в 1953 году. Другой повод подал известный в прошлом популяризатор дарвинизма Эрнст Геккель: в стремлении убедительнее проиллюстрировать эволюционную теорию он переделывал рисунки зародышей животных так, чтобы на ранних стадиях они больше напоминали рыб - того требовал сформулированный им «биогенетический закон» (в развитии особи повторяются основные этапы эволюции вида). Оппоненты, приводя подобные случаи, делают вывод, что при доказательствах эволюционной теории были использованы несуществующие факты, а значит, она ошибочна. В каких-то единичных случаях да, были использованы. Но во-первых, все такие подделки, в том числе пилтдаунский человек и геккелевские рисунки, позже разоблачили, причем сами биологи. Во-вторых, твердо установленных фактов, не противоречащих теории, - гораздо больше. Встречается часто и такой аргумент, который касается, скорее, методологии науки, чем ее содержания, - раз у эволюционной теории есть нерешенные проблемы, значит, она несостоятельна. На это можно сказать следующее: у естественнонаучной теории должны быть нерешенные проблемы и области изучения, которые она только нащупывает. Это следует, в частности, из особенностей эмпирических обобщений: нет логических законов перехода от частного к общему.

Можно привести еще несколько подобных аргументов против теории эволюции. Одни из них будут содержать логические ошибки, другие - показывать, что у современной теории эволюции есть «белые пятна». Во всех этих случаях повода для отказа от теории не возникает, тем более что научной альтернативы ей нет. Принять в качестве таковой креационизм ученые не могут, поскольку он основан на метафизическом подходе. Теория эволюции и миф о Творении - это разные языковые системы, основанные на разном понятийном аппарате, и поэтому их невозможно корректно сравнивать и противопоставлять. А так называемый «научный креационизм» оказался неэффективен в качестве методологии исследования: он не выдвигает экспериментально подтверждаемых гипотез, а значит, бесполезен для развития научного знания.

Все так, и конкурентов у теории эволюции на сегодняшний день нет. Тем не менее с идеологических позиций она подвергается критике, суть которой сводится к тому, что теория оскорбляет чувства верующих. Остроумную идею, примиряющую естествознание и буквальную веру в Святое Писание, выдвинул современник Дарвина креационист Филипп Госсе. Он признавал верными все геологические данные, свидетельствующие о древности мира, но утверждал, что мир и был создан таким, как если бы имел долгую историю. По этому поводу английский математик Бертран Рассел иронично заметил: «Предположив это, нам уже нет надобности считать мир сотворенным в какой-то определенный момент времени. Все мы могли возникнуть всего пять минут назад - небритые, с дырками в носках и готовыми воспоминаниями». Эту идею, пусть и в шутливой форме, все еще используют. Например, в зоопарке американского города Сент-Луис есть зал, посвященный эволюции, и в нем - объявление, гласящее: «Здесь вовсе не утверждается, что мир живого не мог быть создан сразу - просто он выглядит так, будто появился в результате долгой эволюции».